Application Center - Maplesoft

App Preview:

Work: Spring of Unknown Length

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Work 

Spring of Unknown Length 

Copyright Maplesoft, a division of Waterloo Maple Inc., 2007 

 

Introduction 

This application is one of a collection of examples teaching Calculus with Maple. These applications use Clickable Calculus? methods to solve problems interactively. Steps are given at every stage of the solution, and many are illustrated using short video clips.  Click on theImage buttons to watch the videos. 

The steps in the document can be repeated to solve similar problems. 

 

 

Problem Statement 

A spring obeying Hooke's law is extended to a total length of Typesetting:-mrow(Typesetting:-mn(.  To extend it to a total length of Typesetting:-mrow(Typesetting:-mn( requires Typesetting:-mrow(Typesetting:-mn(.  To extend it further to a total length of Typesetting:-mrow(Typesetting:-mn( requires an additional Typesetting:-mrow(Typesetting:-mn(.  Find the natural length of the spring. 

Solution 

For a spring obeying Hooke's law, the extension is a linear function of the applied force, or Typesetting:-mrow(Typesetting:-mi(, where Typesetting:-mrow(Typesetting:-mi( is the spring constant (with units Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mi()  and Typesetting:-mrow(Typesetting:-mi( is the force exerted by the spring. A joule (Typesetting:-mrow(Typesetting:-mi() is a unit of mechanical energy generated when a force of one Newton is applied over a distance of one meter. The work done as the spring is extended to a total length of Typesetting:-mrow(Typesetting:-mi( from a total length Typesetting:-mrow(Typesetting:-mi( is given by the integral 

 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo(  

 

where Typesetting:-mrow(Typesetting:-mi( is the natural (unstretched) length of the spring. 

 

Step 

Result 

Input the equation for the work done when the spring is extended from Typesetting:-mrow(Typesetting:-mn( to Typesetting:-mrow(Typesetting:-mn(. Typesetting:-mrow(Typesetting:-mi( is the natural length of the spring. 

 

Use the definite integral template in the Expression palette to construct the equation. Select the Typesetting:-mrow(Typesetting:-mi( entry from the Units(SI) palette and enter the appropriate units in place of "units." Right-click, Simplify. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo( 

`+`(`*`(`/`(1, 2), `*`(k, `*`(Units:-Unit(`/`(`*`('kg'), `*`(`^`('s', 2)))), `*`(`+`(`*`(`^`(`+`(10, `-`(L)), 2), `*`(`^`(Units:-Unit('cm'), 2))), `-`(`*`(`^`(`+`(5, `-`(L)), 2), `*`(`^`(Units:-Unit('...
`+`(`*`(`/`(1, 2), `*`(k, `*`(Units:-Unit(`/`(`*`('kg'), `*`(`^`('s', 2)))), `*`(`+`(`*`(`^`(`+`(10, `-`(L)), 2), `*`(`^`(Units:-Unit('cm'), 2))), `-`(`*`(`^`(`+`(5, `-`(L)), 2), `*`(`^`(Units:-Unit('...
`+`(`*`(`/`(1, 2), `*`(k, `*`(Units:-Unit(`/`(`*`('kg'), `*`(`^`('s', 2)))), `*`(`+`(`*`(`^`(`+`(10, `-`(L)), 2), `*`(`^`(Units:-Unit('cm'), 2))), `-`(`*`(`^`(`+`(5, `-`(L)), 2), `*`(`^`(Units:-Unit('...
(3.1)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`-`(`*`(`/`(1, 4000), `*`(k, `*`(`+`(`-`(15), `*`(4, `*`(L))), `*`(Units:-Unit('J'))))))) = `+`(`*`(25, `*`(Units:-Unit('J')))) (3.2)
 

 

Input the equation for the work done when the spring is extended from Typesetting:-mrow(Typesetting:-mn( to Typesetting:-mrow(Typesetting:-mn(. 

 

 

 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo( 

`+`(`*`(`/`(1, 2), `*`(k, `*`(Units:-Unit(`/`(`*`('kg'), `*`(`^`('s', 2)))), `*`(`+`(`*`(`^`(`+`(14, `-`(L)), 2), `*`(`^`(Units:-Unit('cm'), 2))), `-`(`*`(`^`(`+`(10, `-`(L)), 2), `*`(`^`(Units:-Unit(...
`+`(`*`(`/`(1, 2), `*`(k, `*`(Units:-Unit(`/`(`*`('kg'), `*`(`^`('s', 2)))), `*`(`+`(`*`(`^`(`+`(14, `-`(L)), 2), `*`(`^`(Units:-Unit('cm'), 2))), `-`(`*`(`^`(`+`(10, `-`(L)), 2), `*`(`^`(Units:-Unit(...
`+`(`*`(`/`(1, 2), `*`(k, `*`(Units:-Unit(`/`(`*`('kg'), `*`(`^`('s', 2)))), `*`(`+`(`*`(`^`(`+`(14, `-`(L)), 2), `*`(`^`(Units:-Unit('cm'), 2))), `-`(`*`(`^`(`+`(10, `-`(L)), 2), `*`(`^`(Units:-Unit(...
(3.3)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`-`(`*`(`/`(1, 1250), `*`(k, `*`(`+`(`-`(6), L), `*`(Units:-Unit('J'))))))) = `+`(`*`(40, `*`(Units:-Unit('J')))) (3.4)
 

 

Simultaneously solve the two equations generated above.  

 

Using the label references ([Ctrl+L] and the label number) of the two equations of work, place the two equations on one line with a comma between them. Right-click, select Solve. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mi( 

`+`(`-`(`*`(`/`(1, 4000), `*`(k, `*`(`+`(`-`(15), `*`(4, `*`(L))), `*`(Units:-Unit('J'))))))) = `+`(`*`(25, `*`(Units:-Unit('J')))), `+`(`-`(`*`(`/`(1, 1250), `*`(k, `*`(`+`(`-`(6), L), `*`(Units:-Uni...
`+`(`-`(`*`(`/`(1, 4000), `*`(k, `*`(`+`(`-`(15), `*`(4, `*`(L))), `*`(Units:-Unit('J'))))))) = `+`(`*`(25, `*`(Units:-Unit('J')))), `+`(`-`(`*`(`/`(1, 1250), `*`(k, `*`(`+`(`-`(6), L), `*`(Units:-Uni...
(3.5)
 

Typesetting:-mover(Typesetting:-mo({L = `/`(3, 2), J = J, k = `/`(100000, 9)} 

 

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.   

 

Image