Application Center - Maplesoft

App Preview:

Series of Constants

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Series of Constants 

? Maplesoft, a division of Waterloo Maple Inc., 2007 

Introduction 

This application is one of a collection of examples teaching Calculus with Maple. These applications use Clickable Calculus? methods to solve problems interactively. Steps are given at every stage of the solution, and many are illustrated using short video clips.  Click on theImage buttons to watch the videos. 

Problem Statement 

Determine if the seriesTypesetting:-mrow(Typesetting:-munderover(Typesetting:-mo( converges or diverges. If it converges, determine its value. 

 

Solution 

 

Explore the Sequence of Partial Sums 

 

Step 

Result 

Generate a sequence of the first few terms in the series. 

 

To a copy of the general term of the series, append the sequence operator ($) as shown.  Press [Enter]. 

 

Convert this sequence to a list. 

 

Right-click on the sequence and select Conversions>ToList 

 

Obtain partial sums of the series. 

 

Right-click on the list of terms and select Partial Sums. 

 

Express the partial sums in floating-point form. 

 

Right-click on the list of partial sums and select Approximate>5. 

 

Plot the sequence of partial sums as a bar chart. 

 

Right-click on the list of partial sums and select Statistics>Visualization>Bar Chart.  Select Quit to embed the graph in the document. 

 

HyperlinkImage 

 

 

Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mrow(Typesetting:-msup(Typesetting:-mn( 

1, `/`(13, 25), `/`(7, 25), `/`(97, 625), `/`(11, 125), `/`(793, 15625), `/`(463, 15625) (1)
 

 

 

Typesetting:-mover(Typesetting:-mo( 

[1, `/`(13, 25), `/`(7, 25), `/`(97, 625), `/`(11, 125), `/`(793, 15625), `/`(463, 15625)] (2)
 

 

 

Typesetting:-mover(Typesetting:-mo( 

[1, `/`(38, 25), `/`(9, 5), `/`(1222, 625), `/`(1277, 625), `/`(32718, 15625), `/`(33181, 15625)] (3)
 

 

 

Typesetting:-mover(Typesetting:-mo( 

[1., 1.5200, 1.8000, 1.9552, 2.0432, 2.0940, 2.1236] (4)
 

 

 

Typesetting:-mover(Typesetting:-mo( 

Plot_2d
 

 

 

 

Formal Test for Convergence 

 

Step 

Result 

Use the Ratio Test to test the series for convergence. 

 

Tasks>Browse: Calculus>Ratio Test. Reference the general term of the series by its equation label. 

 

HyperlinkImage 

 

Ratio Test for Typesetting:-mrow(Typesetting:-munderover(Typesetting:-mo(, where Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( is a sequence of positive constants: 

General Term Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( 

> Typesetting:-mrow(Typesetting:-mi(
 

`/`(`*`(`+`(`^`(2, n), `^`(3, n))), `*`(`^`(5, n))) (5)
 

Test Number Typesetting:-mrow(Typesetting:-mi( 

> Typesetting:-mrow(Typesetting:-munder(Typesetting:-mo(
 

`/`(3, 5) (6)
 

>
 

 

Since the Ratio Test yields a positive value that is less than 1, the series is convergent. 

 

If the Ratio Test fails (test number is 1), the Integral Test may be used. This test states that if Typesetting:-mrow(Typesetting:-mi( for all Typesetting:-mrow(Typesetting:-mi( and 

 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo( 

 

where Typesetting:-mrow(Typesetting:-mi( represents the general term of the series and Typesetting:-mrow(Typesetting:-mi( is treated as a continuous variable, then the series converges. 

 

Step 

Result 

Determine the convergence of the series using the integral test.  

 

Use the integral template from the Expression palette to construct the integral. Here Typesetting:-mrow(Typesetting:-mi( is treated as a continuous variable. 

 

HyperlinkImage 

 

 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo( 

`+`(`/`(`*`(`/`(1, 5), `*`(`+`(`-`(`*`(3, `*`(ln(2)))), `*`(5, `*`(ln(5))), `-`(`*`(2, `*`(ln(3))))))), `*`(`+`(`*`(ln(3), `*`(ln(2))), `-`(`*`(ln(3), `*`(ln(5)))), `-`(`*`(ln(5), `*`(ln(2)))), `*`(`^... (7)
 

 

 

 

 

 

Since the value of the integral is finite, the series converges.  

 

Sum the Series 

 

Step 

Result 

Determine the value of the series. 

 

From its position in the statement of the problem, Control-drag the series to a blank document block and press [Enter]. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mi( 

`/`(13, 6) (8)
 

 

 

To obtain the value of the series from "first principles" recognize that the series is a linear combination of two geometric series, that is  

Typesetting:-mrow(Typesetting:-mi(, 

and note that the sum of the geometric series Typesetting:-mrow(Typesetting:-mi( is Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn(. 

 

Step 

Result 

Determine the value of the series from "first principles." 

 

Note that the series is can be written as Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn(, 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn( 

`/`(13, 6) (9)
 

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.   

Image