
Maple
数学软件
• Maple 教育学术版 • Maple 学生版 • Maple Learn 在线虚拟黑板 • Maple 计算器(手机App) • Maple 专业版 • Maple Flow 计算白板 • Maple 个人版
In mathematics, a piecewise-defined function (also called a piecewise function or a hybrid function) is a function which is defined by multiple sub-functions, each sub-function applying to a certain interval of the main function's domain (a sub-domain). Piecewise is actually a way of expressing the function, rather than a characteristic of the function itself, but with additional qualification, it can describe the nature of the function. For example, a piecewise polynomial function is a function that is a polynomial on each of its sub-domains, but possibly a different one on each.
The word piecewise is also used to describe any property of a piecewise-defined function that holds for each piece but not necessarily hold for the whole domain of the function. A function is piecewise differentiable or piecewise continuously differentiable if each piece is differentiable throughout its subdomain, even though the whole function may not be differentiable at the points between the pieces. In convex analysis, the notion of a derivative may be replaced by that of the subderivative for piecewise functions. Although the "pieces" in a piecewise definition need not be intervals, a function is not called "piecewise linear" or "piecewise continuous" or "piecewise differentiable" unless the pieces are intervals.1
Maple is powerful software for exploring piecewise functions, and for analyzing, exploring, visualizing and solving virtually any mathematical problem. Student pricing available.
1 Source: Wikipedia