Chapter 8: Applications of Triple Integration
Section 8.1: Volume
|
Example 8.1.8
|
|
Use an iterated triple integral to obtain the volume of , the region common to the two cylinders and .
|
|
|
|
Solution
|
|
|
Mathematical Solution
|
|
Figure 8.1.8(a) shows the two intersecting cylinders; Figure 8.1.8(b), the actual region ; and Figure 8.1.8(c), a cut-away view in the first octant.
>
|
use plottools, plots in
EX818:=module()
local p1,p2;
export p3;
p1:=cylinder([0,0,-2],1,4);
p2:=rotate(p1,0,Pi/2,0);
p3:=display(p1,p2,scaling=constrained,labels=[x,y,z],axes=frame,tickmarks=[5,2,5],lightmodel=light4,orientation=[-75,65,0]);
print(p3);
end module:
end use:
|
|
Figure 8.1.8(a) Cylinders
|
|
|
|
|
Figure 8.1.8(b) Region
|
|
|
|
|
|
|
The volume of can be found by iterating in the order , with the horizontal cylinder solved for and the vertical cylinder solved for . As a result, the requisite volume is then
=
|
|
Maple Solution - Interactive
|
|
Table 8.1.8(a) provides, via a visualization task template, a solution in Cartesian coordinates.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cartesian 3-D
|
Evaluate and Graph
|
Volume Element
|
, where
|
|
|
|
|
|
Table 8.1.8(a) Solution in Cartesian coordinates via a visualization task template
|
|
|
Table 8.1.8(b) provides, via a visualization task template, a solution in cylindrical coordinates.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cylindrical
|
Evaluate and Graph
|
|
, where
|
|
|
|
|
|
Table 8.1.8(b) Solution in cylindrical coordinates via a visualization task template
|
|
|
Table 8.1.8(c) provides, via a task template that implements the MultiInt command from the Student MultivariateCalculus package, a solution in Cartesian coordinates.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Multiple Integration≻Cartesian 3-D
|
Iterated Triple Integrals in Cartesian Coordinates
|
Integrand:
|
|
Region:
|
|
|
|
|
|
|
|
|
|
|
|
|
Inert Integral:
|
|
Value:
|
|
Stepwise Evaluation:
|
|
|
|
|
Table 8.1.8(c) Task template implementation of MultiInt solution in Cartesian coordinates
|
|
|
Access the MultiInt command via the Context Panel
|
|
•
|
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated
Fill in the fields of the two dialogs shown below.
|
•
|
Context Panel: Evaluate Integral
|
|
|
|
|
|
|
Table 8.1.8(d) provides, via a task template that implements the MultiInt command from the Student MultivariateCalculus package, a solution in cylindrical coordinates.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Multiple Integration≻Cylindrical
|
Iterated Triple Integral in Cylindrical Coordinates
|
Integrand:
|
|
Region:
|
|
|
|
|
|
|
|
|
|
|
|
|
Inert Integral:
(Note automatic insertion of Jacobian.)
|
|
Value:
|
|
Stepwise Evaluation:
|
|
|
|
|
Table 8.1.8(d) Task template implementation of MultiInt solution in cylindrical coordinates
|
|
|
Access the MultiInt command via the Context Panel
|
|
•
|
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated
Fill in the fields of the two dialogs shown below.
|
•
|
Context Panel: Evaluate Integral
|
|
|
|
|
|
|
Table 8.1.8(e) provides solutions from first principles: on the left, a solution in Cartesian coordinates; on the right, in cylindrical coordinates.
=
|
=
|
Table 8.1.8(e) From first principles, solutions in both Cartesian and cylindrical coordinates
|
|
|
|
|
Maple Solution - Coded
|
|
Table 8.1.8(f) provides, from first principles using the top-level Int and int commands, solutions in Cartesian and cylindrical coordinates.
|
|
Table 8.1.8(f) From first principles, solutions in Cartesian and cylindrical coordinates.
|
|
|
Table 8.1.8(g) demonstrates the syntax applying the MultiInt command in both Cartesian and cylindrical coordinates.
Initialize
|
•
|
Install the Student MultivariateCalculus package.
|
|
|
•
|
Context Panel: Assign Name
|
|
|
•
|
Context Panel: Assign Name
|
|
|
Implement the MultiInt command in Cartesian coordinates
|
|
Implement the MultiInt command in cylindrical coordinates
|
|
Table 8.1.8(g) Application of the MultiInt command in Cartesian and cylindrical coordinates
|
|
|
|
|
|
<< Previous Example Section 8.1
Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
|