QDifferenceEquations
Zeilberger
perform Zeilberger's algorithm (q-difference case)
Calling Sequence
Parameters
Description
Examples
References
Zeilberger(T, n, k, q, Qn)
T
-
q-hypergeometric term in qn and qk
n
name
k
q
Qn
name; denote the q-shift operator with respect to qn
For a specified q-hypergeometric term Tqn,qk of qn and qk, the Zeilberger(T, n, k, q, Qn) calling sequence constructs for Tqn,qk a Z-pair L,G that consists of a linear q-difference operator with coefficients that are polynomials of N=qn
L=avqnQnv+...+a1qnQn+a0qn
and a q-hypergeometric term Gqn,qk of qn and qk such that
LoTqn,qk=Gqn,qk+1−Gqn,qk
Qn is the q-shift operator with respect to qn, defined by QnFqn,qk=Fqn+1,qk.
By assigning values to the global variables _MINORDER and _MAXORDER, the algorithm is restricted to finding a Z-pair L,G for Tqn,qk such that the order of L is between _MINORDER and _MAXORDER (the default value of _MAXORDER is 6).
The output from the Zeilberger command is a list of two elements L,G representing the computed Z-pair L,G.
withQDifferenceEquations:
T≔qn+kQBinomialn,k,q
Zpair≔ZeilbergerT,n,k,q,Qn:
Zpair1
Qn2+−q2−qQn−qnq4+q3
Zpair2
−qnq4qqn−1−1+qkqkqn+kQBinomialn,k,q−qqn+qk−qnq2+qk
T≔2qk2QPochhammerq,q,kQPochhammerq,q,n−k
−qnq2+1Qn2+−qn2q3+qnq2−q−1Qn+q
2qk2qn2q4−1+qkQPochhammerq,q,kQPochhammerq,q,n−k−qqn+qk−qnq2+qk
Petkovsek, M.; Wilf, H.; and Zeilberger, D. A=B. Wellesley, Massachusetts: A K Peters, Ltd., 1996.
See Also
SumTools[Hypergeometric][Zeilberger]
Download Help Document