GeneralConstruct - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains[ConstructibleSetTools]

  

GeneralConstruct

  

construct a constructible set from a regular chain, equalities, and inequalities

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

GeneralConstruct(F, T, H, R)

GeneralConstruct(F, T, R)

GeneralConstruct(T, H, R)

GeneralConstruct(F, H, R)

Parameters

F, H

-

lists of polynomials

T

-

regular chain

R

-

polynomial ring

Description

• 

The command GeneralConstruct(F, T, H, R) returns a constructible set .

  

Assume that the quasi-component of T is  (see RegularChains for the definition). Then  consists of points in  which cancel all polynomials in F, but do not cancel any polynomials in H.

• 

If F is not specified, it is set to be the empty list.

• 

If T is not specified, it is set to be the empty regular chain.

• 

If H is not specified, it is set to .

• 

The quasi-component of the empty regular chain is the whole space.

• 

Any other inputs will be rejected and an error message will be reported.

• 

This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form GeneralConstruct(..) only after executing the command with(RegularChains[ConstructibleSetTools]).  However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][GeneralConstruct](..).

Examples

First, define a polynomial ring and three polynomials in the ring.

(1)

(2)

Build a regular chain using , which means  vanishes but the initial  of  does not vanish.

(3)

Use GeneralConstruct to figure out the points in  which cancel  but do not cancel .

(4)

cs is a constructible set consisting of one regular system.

(5)

The inequalities form the following list.

(6)

To see complete information, use the Info command.

(7)

See Also

ConstructibleSet

ConstructibleSetTools

Info

Intersect

RegularChains

RepresentingInequations

Triangularize

 


Download Help Document