SymmetricPair - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Query[SymmetricPair] - check if a subalgebra, subspace pair defines a symmetric pair in a Lie algebra

Calling Sequences

     Query(M, S, "SymmetricPair")

     Query(M, S, parm, "SymmetricPair")

Parameters

     M      - a list of independent vectors which defines a reductive complement to S in a Lie algebra

     S      - a list of independent vectors which form a subalgebra in

     parm   - (optional) a set of parameters appearing in the list of vectors M

 

Description

Examples

Description

• 

 Let be a Lie algebra,a subalgebra, and  a subspace. The subalgebra, subspace pair  is a symmetric pair if [i] [ii] for and and [iii]  for and . Note that [i] and [ii] imply that define a  reductive pair. If  is a symmetric pair then  is a naturally reductive pair for any inner product on If  is a symmetric pair, then  is called a symmetric complement to the subalgebra .

• 

Query(M, S, "SymmetricPair") returns true if the subspace M defines a symmetric complement to the subalgebra S, and false otherwise.

• 

Query(M, S, parm, "SymmetricPair") returns a sequence TF, Eq, Soln, symmetricList. Here TF is true if Maple finds parameter values for which S is a symmetric complement and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for S to be a symmetric complement; Soln is the list of solutions to the equations Eq; and symmetricList is the list of symmetric complements obtained from the parameter values given by the different solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

(2.1)

 

We can check that the subspace span defines a symmetric complement for the subalgebra span.

Alg > 

Alg > 

(2.2)

 

In fact, we can show that span is the only symmetric complement to by constructing the general complement span.

Alg > 

Alg > 

(2.3)

 

SOLN shows that all the parameters  must be zero in order for to define a symmetric pair.

Alg > 

(2.4)

 

Next we show that the subalgebra  spandoes not admit a symmetric complement at all.

Alg > 

Alg > 

Alg > 

(2.5)
Alg > 

(2.6)

See Also

DifferentialGeometry

LieAlgebras

Query

 


Download Help Document