KillingBracket - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[KillingBracket] - a covariant form of the Schouten bracket for symmetric tensors

Calling Sequences

     KillingBracket(g, R, S)

Parameters

     g         - a covariant metric tensor on a manifold

     R, S      - symmetric covariant tensor fields on

 

Description

Examples

Description

• 

If  and  are symmetric covariant tensor fields of rank  and , respectively, then T = KillingBracket(g, R, S) is a symmetric covariant tensor field of rank . If  and  correspond to Killing tensors for the metric , then  is also a Killing tensor.

• 

KillingBracket(g, R, S) can be defined in terms of the Schouten bracket for symmetric contravariant tensors by using the metric  to raise all the indices on the tensors  and  to obtain contravariant tensors  and , then computing the Schouten bracket W = TensorBrackets(g, U, V, "Schouten") and then lowering all the indices of . An explicit formula for the KillingBracket can be found in the article of N. M. J. Woodhouse.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KillingBracket(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-KillingBracket.

Examples

 

Example 1.

We compute the Killing bracket of two rank-2 tensors.

 and  are Killing tensors on  with respect to .

(2.1)
M > 

(2.2)
M > 

(2.3)
M > 

(2.4)

 

We compute the Killing bracket of  and  and verify that the result is a Killing tensor.

M > 

(2.5)
M > 

(2.6)
M > 

See Also

DifferentialGeometry

JetCalculus

Tensor

CheckKillingTensor

KillingTensors

TensorBrackets

 


Download Help Document