GroupTheory
IsHomocyclic
attempt to determine whether a group is homocyclic
Calling Sequence
Parameters
Description
Examples
Compatibility
IsHomocyclic( G )
G
-
a group
A group G is homocyclic if it is isomorphic to a direct power of a cyclic group; that is, of the form Cnk, for some positive integer n and non-negative integer k.
The IsHomocyclic( G ) command attempts to determine whether the group G is homocyclic. It returns true if G is homocyclic and returns false otherwise. The command may return FAIL on (most) finitely presented groups.
Cyclic groups and elementary abelian groups are homocyclic.
withGroupTheory:
IsHomocyclicTrivialGroup
true
IsHomocyclicCyclicGroup15
G≔SmallGroup36,14:
IsHomocyclicG
AreIsomorphicG,DirectProductCyclicGroup6,CyclicGroup6
IsHomocyclicSmallGroup4,1
IsHomocyclica,b|a2,b2,a·b=b·a
IsHomocyclicSymm3
false
IsHomocyclicQuaternionGroup
The GroupTheory[IsHomocyclic] command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
GroupTheory[AreIsomorphic]
GroupTheory[CyclicGroup]
GroupTheory[DirectProduct]
GroupTheory[IsCyclic]
GroupTheory[QuaternionGroup]
GroupTheory[SmallGroup]
GroupTheory[SymmetricGroup]
GroupTheory[TrivialGroup]
with
Download Help Document