GroupTheory
IsSpecial
determine whether a group is a special p-group, for some prime p
IsExtraspecial
determine whether a group is an extraspecial p-group, for some prime p
Calling Sequence
Parameters
Description
Examples
IsSpecial( G )
IsExtraspecial( G )
G
-
: PermutationGroup : a permutation group
Let G be a finite of prime-power order. We say that G is special if either G is elementary abelian, or if the center, derived subgroup, and Frattini subgroup of G all coincide and is elementary abelian. If, in addition, these coindicent subgroups of G have prime order, then G is said to be extraspecial. Note that non-trivial abelian groups are not extraspecial, since their centers and derived subgroups cannot be equal.
The IsSpecial( G ) command returns true if the permutation group G is a special p-group, for some prime number p.
The IsExtraspecial( G ) command returns true if the permutation group G is an extraspecial p-group, for some prime number p.
Both commands return false if the group G is not a p-group for any prime number p.
withGroupTheory:
IsSpecialAlt4
false
IsSpecialCyclicGroup3
true
IsExtraspecialCyclicGroup3
IsSpecialCyclicGroup4
IsSpecialElementaryGroup11,4
IsExtraspecialElementaryGroup11,4
IsSpecialDihedralGroup4
IsSpecialDihedralGroup16
GroupOrderCenterDihedralGroup16
2
GroupOrderDerivedSubgroupDihedralGroup16
8
IsSpecialQuaternionGroup
IsExtraspecialQuaternionGroup
mapGroupOrder,Center,DerivedSubgroup,FrattiniSubgroupQuaternionGroup
2,2,2
IsSpecialSmallGroup1331,5
IsSpecialQuaternionGroup5
IsExtraspecialQuaternionGroup5
GroupOrderCenterQuaternionGroup5
GroupOrderDerivedSubgroupQuaternionGroup5
IsExtraspecialSmallGroup1331,5
IsSpecialTrivialGroup
IsExtraspecialTrivialGroup
G≔PSL2,9:
g≔RandomInvolutionG:
C≔Centralizerg,G
C≔2,53,4,1,63,4,2,34,5
IsExtraspecialC
AreIsomorphicC,DihedralGroup4
See Also
GroupTheory[AlternatingGroup]
GroupTheory[DihedralGroup]
Download Help Document