Softmax - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


DeepLearning/Tensor/Softmax

compute softmax of a Tensor

DeepLearning/Tensor/SoftmaxCrossEntropyWithLogits

compute softmax of a Tensor with logits

DeepLearning/Tensor/Softplus

compute softplus of a Tensor

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

Softmax(t,opts)

SoftmaxCrossEntropyWithLogits(t,labels=x,logits=y,opts)

Softplus(t,opts)

Parameters

t

-

Tensor

opts

-

zero or more options as specified below

Options

• 

axis=list(integer) or integer

The value of option axis is an integer or list of integers which describes which axis of the input Tensor to reduce across.

• 

name=string

The value of option name specifies an optional name for this Tensor, to be displayed in output and when visualizing the dataflow graph.

Description

• 

The Softmax(t,opts) command computes the softmax function of a Tensor t,

• 

The SoftmaxCrossEntropyWithLogits(t,labels=x,logits=y) command computes the softmax function with labels x and logits y.

• 

The Softplus(t,opts) command computes log(exp(t)+t) of a Tensor t.

Examples

withDeepLearning:

WVariable29.,93.,29.,12.,80.,96.,96.,92.,89.,datatype=float8

WDeepLearning VariableName: Variable:0Shape: [3, 3]Data Type: float[8]

(1)

SoftmaxW

DeepLearning TensorShape: [3, 3]Data Type: float[8]

(2)

SoftplusW

DeepLearning TensorShape: [3, 3]Data Type: float[8]

(3)

Compatibility

• 

The DeepLearning/Tensor/Softmax, DeepLearning/Tensor/SoftmaxCrossEntropyWithLogits and DeepLearning/Tensor/Softplus commands were introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

DeepLearning Overview

DeepLearning,SoftmaxLayer

Tensor