NormHinf - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

DynamicSystems

  

NormHinf

  

Compute the H norm of a linear system

 

Calling Sequence

Parameters

Options

Description

Examples

References

Compatibility

Calling Sequence

NormHinf(sys)

NormHinf(sys, eps)

Parameters

sys

-

System; system object

eps

-

(optional) nonnegative; relative accuracy. The default value is 10^(-6).

opts

-

(optional) equation(s) of the form option = value; specify options for the NormHinf command

Options

• 

output = norm or peakfreq or list of these names.

Specifies the returned values. By default, only the H norm is returned. If peakfreq is specified, the angular frequency (rad/s) at which the peak gain of sys occurs is returned.

• 

checkstability = truefalse

True means check whether the system is stable; if it is not stable, raise a warning. False means skip the check. The default is true.

Description

• 

The NormHinf command computes the H norm of a linear system sys, with relative accuracy eps. Both continuous-time and discrete-time systems, and both single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems are supported.

Continuous-time

• 

For a stable SISO linear system with transfer function Gs, the H norm is defined in the frequency domain as:

  

‖G‖ = supωGjω

• 

For a MIMO linear system with transfer function Matrix Gs, the definition of H norm in the frequency domain is generalized to:

  

‖G‖ = supωσmaxGjω

  

where σmax is the maximum singular value.

• 

In the time domain, the H norm of a transfer function is calculated assuming that the stable transfer function Gs has a state-space representation:

  

x.=Ax+Bw

  

y=Cx+Dw

  

where: A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n, and D ∈ ℝp×m, and n, m, and p are the number of states, inputs and outputs of the linear system respectively.

  

Gs=YsWs and Gs=C. sIA1. B+D, with A stable (all eigenvalues of A have a negative real part).

  

Then the H norm of the transfer function Matrix Gs is ‖G‖<γ for some 0<γ, not equal to a singular value of Matrix D, if and only if σmaxH<γ has no eigenvalues on the imaginary axis. The Matrix H is defined as:

  

Hγ = ABR1DTC&gamma;BR1BT&gamma;CTS1CAT+CTDR1BT

  

where R=DT·Dγ2Im and S=D·DTγ2Ip (subscripts m and p indicate the dimensions of the respective identity Matrices).

Discrete-time

• 

For a stable SISO linear system with transfer function Gz, the H norm is defined in the frequency domain as:

  

‖G‖ = sup0ω<2πG&ExponentialE;jω

• 

For a MIMO linear system with transfer function Matrix Gz, the definition of H norm in the frequency domain is generalized to:

  

‖G‖ = sup0ω<2πσmaxG&ExponentialE;jω

  

where σmax is the maximum singular value.

• 

In the time domain, the H norm of a transfer function is calculated assuming that the stable transfer function Gz has a state-space representation:

  

xk+1=Axk+Bwk

  

yk=Cxk+Dwk

  

so that Gz=YzWz and Gz=C. zIA1. B+D, with A stable (all eigenvalues of A have a magnitude less than 1).

• 

The H norm of the transfer function Matrix Gz is calculated using the bilinear transformation, since the H norm for a discrete-time LTI system is preserved in the continuous-time domain under such transformation.

• 

The H norm provides a measure of the worst-case system gain, i.e., the largest factor by which any sinusoidal input is magnified by the system. For instance, the H norm of the transfer function G from w (disturbance input) to y (output) provides a measure of the worst-case influence of the noise w on the output y of an LTI system.

• 

For a SISO linear system, the H norm is the maximum gain of the frequency response of the system. In an analogous way, for a MIMO linear system, the H norm is the maximum gain across all inputs and outputs of the system.

• 

The H norm of G equals the peak value on the Bode magnitude plot of G. It also equals the distance from the origin to the farthest point on the Nyquist plot of G.

• 

The H norm is finite if and only if the transfer function G is proper (degree of denominator greater than or equal to degree of numerator) and has no poles on the imaginary axis (continuous-time) or on the unit circle (discrete-time).

Examples

withDynamicSystems&colon;

Example 1 : Find the H norm of a continuous-time system.

sys1TransferFunction100s+5&colon;

PrintSystemsys1

Transfer Functioncontinuous1 output(s); 1 input(s)inputvariable&equals;u1soutputvariable&equals;y1stf1,1&equals;100s+5

(1)

hinfnorm1NormHinfsys1&comma;1010

hinfnorm120.00000000

(2)

MagnitudePlotsys1&comma;decibels=false&comma;range=0.001..100

magMagnitudePlotsys1&comma;decibels=false&comma;range=0.001..100&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph19.9999996000000

(3)

Example 2: Find the H norm of the system given by the following differential equation. Show the peak frequency and the norm in that order.

sys2DiffEquationdiffdiffxt&comma;t&comma;t=10xtdiffxt&comma;t+wt&comma;wt&comma;xt&colon;

PrintSystemsys2

Diff. Equationcontinuous1 output(s); 1 input(s)inputvariable&equals;wtoutputvariable&equals;xtde&equals;&DifferentialD;2&DifferentialD;t2xt=10xt&DifferentialD;&DifferentialD;txt+wt

(4)

hinfnorm2NormHinfsys2&comma;output=peakfreq&comma;norm

hinfnorm23.08220698300547&comma;0.320256627866482

(5)

MagnitudePlotsys2&comma;decibels=false

magMagnitudePlotsys2&comma;decibels=false&comma;output=data&colon;

membermaxmag1..1&comma;2..2&comma;mag1..1&comma;2..2&comma;p&colon;fHinfmagp

fHinf3.079785057

(6)

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph0.320252649756933

(7)

Example 3 : Find the H norm of a continuous state-space MIMO system.

sys3StateSpace0&comma;0&comma;3|1&comma;0&comma;4|0&comma;1&comma;7&comma;0&comma;0&comma;1&comma;1|0|0&comma;Matrix1&comma;1&colon;

PrintSystemsys3

State Spacecontinuous1 output(s); 1 input(s); 3 state(s)inputvariable&equals;u1toutputvariable&equals;y1tstatevariable&equals;x1t&comma;x2t&comma;x3ta&equals;010001−3−4−7b&equals;001c&equals;100d&equals;0

(8)

hinfnorm3NormHinfsys3&comma;output=norm&comma;peakfreq

hinfnorm30.451322261502234&comma;0.559605319105210

(9)

MagnitudePlotsys3&comma;decibels=false

magMagnitudePlotsys3&comma;decibels=false&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph0.451320291397442

(10)

memberHinfgraph&comma;mag1..1&comma;2..2&comma;p&colon;fHinfmagp

fHinf0.5590478459

(11)

Example 4: Find the H norm of a continuous transfer function G(s) with .1% of tolerance.

sys4TransferFunctionMatrix1s3+s2+5s+2&comma;ss3+s2+5s+2&comma;s2s3+s2+5s+2&colon;

PrintSystemsys4

Transfer Functioncontinuous3 output(s); 1 input(s)inputvariable&equals;u1soutputvariable&equals;y1s&comma;y2s&comma;y3stf1,1&equals;1s3+s2+5s+2tf2,1&equals;ss3+s2+5s+2tf3,1&equals;s2s3+s2+5s+2

(12)

hinfnorm4NormHinfsys4&comma;0.001&comma;output=norm&comma;peakfreq

hinfnorm41.89966130541915&comma;2.180899209

(13)

MagnitudePlotsys4&comma;decibels=false

magMagnitudePlotsys4&comma;decibels=false&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph1.69438112239631

(14)

memberHinfgraph&comma;mag31..1&comma;2..2&comma;p&colon;fHinfmag3p

fHinf2.184166359

(15)

Example 5: Find the H norm of a continuous transfer function matrix.

sys5TransferFunctionMatrix1s2+s+4&comma;0&comma;0&comma;1s2+s+4&colon;

PrintSystemsys5

Transfer Functioncontinuous2 output(s); 2 input(s)inputvariable&equals;u1s&comma;u2soutputvariable&equals;y1s&comma;y2stf1,1&equals;1s2+s+4tf2,1&equals;0tf1,2&equals;0tf2,2&equals;1s2+s+4

(16)

hinfnorm5NormHinfsys5&comma;output=norm&comma;peakfreq

hinfnorm50.516398295858964&comma;1.87082283018653

(17)

MagnitudePlotsys5&comma;decibels=false

magMagnitudePlotsys5&comma;decibels=false&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph0.516350854134402

(18)

memberHinfgraph&comma;mag11..1&comma;2..2&comma;p&colon;fHinfmag1p

fHinf1.863838004

(19)

Example 6: Find the H norm of a continuous state-space SISO system.

sys6StateSpaceMatrix0&comma;1&comma;25&comma;0.1&comma;Matrix0&comma;1&comma;Matrix1&comma;0&comma;Matrix0&colon;

PrintSystemsys6

State Spacecontinuous1 output(s); 1 input(s); 2 state(s)inputvariable&equals;u1toutputvariable&equals;y1tstatevariable&equals;x1t&comma;x2ta&equals;01−25−0.1b&equals;01c&equals;10d&equals;0

(20)

hinfnorm6NormHinfsys6&comma;output=norm&comma;peakfreq

hinfnorm62.00010200760040&comma;4.99949995099029

(21)

MagnitudePlotsys6&comma;decibels=false

magMagnitudePlotsys6&comma;decibels=false&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph1.99995097863956

(22)

memberHinfgraph&comma;mag1..1&comma;2..2&comma;p&colon;fHinfmagp

fHinf5.000110374

(23)

Example 7 : Find the H norm of a system with discrete-time transfer function shown below.

sys7TransferFunction102z+110z2+2z+5&comma;discrete&comma;sampletime=0.1&colon;

PrintSystemsys7

Transfer Functiondiscrete; sampletime = .11 output(s); 1 input(s)inputvariable&equals;u1zoutputvariable&equals;y1ztf1,1&equals;20z+1010z2+2z+5

(24)

hinfnorm7NormHinfsys7&comma;108&comma;output=norm&comma;peakfreq

hinfnorm74.26497897082109&comma;17.0452791622670

(25)

MagnitudePlotsys7&comma;decibels=false&comma;range=0.01..πsys7:-sampletime

magMagnitudePlotsys7&comma;decibels=false&comma;range=0.01..πsys7:-sampletime&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph4.289843575

(26)

memberHinfgraph&comma;mag1..1&comma;2..2&comma;p&colon;fHinfmagp

fHinf16.66285136

(27)

Example 8 : Find the H norm of a system with discrete-time transfer function shown below.

sys8TransferFunction5&comma;14.2&comma;14.4&comma;5&comma;5&comma;12.1&comma;10&comma;2.7&comma;discrete&comma;sampletime=0.5&colon;

PrintSystemsys8

Transfer Functiondiscrete; sampletime = .51 output(s); 1 input(s)inputvariable&equals;u1zoutputvariable&equals;y1ztf1,1&equals;5.z314.20000000z2+14.40000000z5.5.z312.10000000z2+10.z2.700000000

(28)

hinfnorm8NormHinfsys8&comma;output=norm&comma;peakfreq

hinfnorm84.63571003774221&comma;0.615651253991576

(29)

MagnitudePlotsys8&comma;decibels=false&comma;range=0.01..πsys8:-sampletime

magMagnitudePlotsys8&comma;decibels=false&comma;range=0.01..πsys8:-sampletime&comma;output=data&colon;

Hinfgraphmaxmag1..1&comma;2..2

Hinfgraph4.635634989

(30)

memberHinfgraph&comma;mag1..1&comma;2..2&comma;p&colon;fHinfmagp

fHinf0.6152990634

(31)

References

  

S. Boyd, V. Balakrishnan, P. Kabamba, On computing the H norm of a transfer matrix, 1988.

  

N. A. Bruinsma, M. Steinbuch, A fast algortihm to compute the H-norm of a transfer function matrix, 1990.

Compatibility

• 

The DynamicSystems[NormHinf] command was introduced in Maple 18.

• 

For more information on Maple 18 changes, see Updates in Maple 18.

See Also

DynamicSystems

DynamicSystems[MagnitudePlot]

DynamicSystems[NormH2]

DynamicSystems[ToContinuous]

 


Download Help Document