GroupTheory
ProjectiveSymplecticGroup
construct a permutation group isomorphic to a projective symplectic group
Calling Sequence
Parameters
Description
Examples
Compatibility
ProjectiveSymplecticGroup(n, q)
PSp(n, q)
n
-
an even positive integer
q
power of a prime number
The projective symplectic group PSp⁡n,q is the quotient of the symplectic group Sp⁡n,q by its center.
The groups PSp⁡n,q are simple except for the group PSp⁡2,2 , which is isomorphic to S3 , the group PSp⁡2,3 , isomorphic to A4 , and the group PSp⁡4,2 which is isomorphic to S6 .
Note that for n=2 the groups PSp⁡n,q and PSL⁡n,q are isomorphic.
The integer n must be even.
The ProjectiveSymplecticGroup( n, q ) command returns a permutation group isomorphic to the projective symplectic group PSp⁡n,q .
The PSp( n, q ) command is provided as an abbreviation.
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G ≔ ProjectiveSymplecticGroup⁡2,64
PSL⁡2,64
Degree⁡G
65
GroupOrder⁡G
262080
IsTransitive⁡G
true
AreIsomorphic⁡PSp⁡2,2,Symm⁡3
AreIsomorphic⁡PSp⁡2,3,Alt⁡4
GroupOrder⁡PSp⁡4,3
25920
IsSimple⁡PSp⁡4,3
Display⁡CharacterTable⁡PSp⁡4,3
C
1a
2a
2b
3a
3b
3c
3d
4a
4b
5a
6a
6b
6c
6d
6e
6f
9a
9b
12a
12b
|C|
1
45
270
40
240
480
540
3240
5184
360
720
1440
2160
2880
χ__1
χ__2
5
−3
12−3⁢I⁢32
12+3⁢I⁢32
−1
2
0
−32−I⁢32
−32+I⁢32
−I⁢3
I⁢3
12+−32
12−−32
−12+I⁢32
−12−I⁢32
χ__3
χ__4
6
−2
3
χ__5
10
−72−3⁢I⁢32
−72+3⁢I⁢32
−12+−32
−12−−32
12−I⁢32
12+I⁢32
χ__6
χ__7
15
χ__8
7
χ__9
20
4
χ__10
24
8
χ__11
30
−32−9⁢I⁢32
−32+9⁢I⁢32
χ__12
χ__13
−10