HGDispersion - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LREtools[HypergeometricTerm]

  

HGDispersion

  

return the hypergeometric dispersion of two polynomials depending on a hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

HGDispersion(p, q, x, r)

Parameters

p

-

first polynomial

q

-

second polynomial

x

-

independent variable, for example, x

r

-

list of equations that specifies the tower of hypergeometric extensions

Description

• 

The HGDispersion(p, q, x, r) command returns the hypergeometric dispersion of p and q, that is,

D=max{n0:deggcdp,Enq>0}

where E: Ex=x+1 is the shift operator and px and qx are polynomials in K(r), where K is the ground field and r is the tower of hypergeometric extensions. Each ri is specified by a hypergeometric term, that is, Eriri is a rational function over K. The HGDispersion function returns −1 if the hypergeometric dispersion is not defined.

• 

The polynomials can contain hypergeometric terms in their coefficients. These terms are defined in the formal parameter r. Each hypergeometric term in the list is specified by a name, for example, t. It can be specified directly in the form of an equation, for example, t=n!, or specified as a list consisting of the name of the term variable and the consecutive term ratio, for example, t,n+1.

• 

The computation of hypergeometric dispersions is reduced to solving the σ-orbit problem (see OrbitProblemSolution) in the shortened tower of hypergeometric extensions.

Examples

withLREtoolsHypergeometricTerm:

aliasφ=3+4RootOfx2+15:

pφ4s2+φ2s+1

pφ4s2+φ2s+1

(1)

qs2+s+1

qs2+s+1

(2)

exts=φx

exts=φx

(3)

HGDispersionp,q,x,ext

2

(4)

aliasφ=RootOfx35:

pφ4s2+φ2s+1

pφ4s2+φ2s+1

(5)

qs2+s+1

qs2+s+1

(6)

exts=φx

exts=φx

(7)

HGDispersionp,q,x,ext

−1

(8)

p24s2+22s+1+v

p16s2+4s+v+1

(9)

q16x+32x+22x+12s2+4x+3x+2x+1s+1+8v

q16x+32x+22x+12s2+4x+3x+2x+1s+1+8v

(10)

extv=2x,s=x!

extv=2x,s=x!

(11)

HGDispersionsq,pv+s,x,ext

3

(12)

References

  

Abramov, S.A., and Bronstein, M. "Hypergeometric dispersion and the orbit problem." Proc. ISSAC 2000.

See Also

alias

LREtools[HypergeometricTerm]

LREtools[HypergeometricTerm][OrbitProblemSolution]

LREtools[HypergeometricTerm][RationalSolution]

LREtools[HypergeometricTerm][UniversalDenominator]