symsum - Maple Help

MTM

 symsum
 symbolic sum

 Calling Sequence symsum(M) symsum(M, v) symsum(M, a, b) symsum(M, v, a, b)

Parameters

 M - array v - variable a - lower limit of summation b - upper limit of summation

Description

 • The symsum(M) function computes the element-wise symbolic sum of M.  The result, R, is formed as R[i,j] = symsum(M[i,j], v, a, b).
 • F = symsum(f) is the indefinite symbolic sum of the scalar f. If f is a constant the variable of summation is n.
 • symsum(f,v) is the indefinite symbolic sum of the scalar f with respect to v.
 • symsum(f,a,b) is the definite symbolic sum of the scalar f in the range a..b.
 • symsum(f,v,a,b) is definite symbolic sum of the scalar f in the range a..b with respect to v.

Examples

 > $\mathrm{with}\left(\mathrm{MTM}\right):$
 > $M≔\mathrm{Matrix}\left(2,3,'\mathrm{fill}'={ⅇ}^{x}+3{x}^{2}+5\right):$
 > $\mathrm{symsum}\left(M\right)$
 $\left[\begin{array}{ccc}\frac{{x}{}\left({2}{}{{x}}^{{2}}{-}{3}{}{x}{+}{11}\right)}{{2}}{+}\frac{{{ⅇ}}^{{x}}}{{ⅇ}{-}{1}}& \frac{{x}{}\left({2}{}{{x}}^{{2}}{-}{3}{}{x}{+}{11}\right)}{{2}}{+}\frac{{{ⅇ}}^{{x}}}{{ⅇ}{-}{1}}& \frac{{x}{}\left({2}{}{{x}}^{{2}}{-}{3}{}{x}{+}{11}\right)}{{2}}{+}\frac{{{ⅇ}}^{{x}}}{{ⅇ}{-}{1}}\\ \frac{{x}{}\left({2}{}{{x}}^{{2}}{-}{3}{}{x}{+}{11}\right)}{{2}}{+}\frac{{{ⅇ}}^{{x}}}{{ⅇ}{-}{1}}& \frac{{x}{}\left({2}{}{{x}}^{{2}}{-}{3}{}{x}{+}{11}\right)}{{2}}{+}\frac{{{ⅇ}}^{{x}}}{{ⅇ}{-}{1}}& \frac{{x}{}\left({2}{}{{x}}^{{2}}{-}{3}{}{x}{+}{11}\right)}{{2}}{+}\frac{{{ⅇ}}^{{x}}}{{ⅇ}{-}{1}}\end{array}\right]$ (1)