PartiallyOrderedSets
NumberOfElements
returns the cardinality of the underlying set of a poset
Calling Sequence
Parameters
Description
Examples
References
Compatibility
NumberOfElements(P)
P
-
PartiallyOrderedSet
The command NumberOfElements(P) returns the number of elements of the partially ordered set P.
Terminology
A partially ordered set, or poset for short, is a pair (P, <=) where P is a set and <= is a partial order on P. The number of elements of (P, <=) is simply the cardinality of P.
with⁡PartiallyOrderedSets:
divisibility≔x,y↦irem⁡y,x=0
Create a poset from a set and a non-strict partial order
V≔∅:leq≔`<=`:empty_poset≔PartiallyOrderedSet⁡V,leq
empty_poset≔< a poset with 0 elements >
Compute the number of its elements
NumberOfElements⁡empty_poset
0
S≔1,2,3,4,5:poset1≔PartiallyOrderedSet⁡S,leq
poset1≔< a poset with 5 elements >
Display this poset
DrawGraph⁡poset1
NumberOfElements⁡poset1
5
Z≔1,2,3,4,5,6,10,12,15,20,30,60
poset10≔PartiallyOrderedSet⁡Z,divisibility
poset10≔< a poset with 12 elements >
DrawGraph⁡poset10
NumberOfElements⁡poset10
12
Richard P. Stanley: Enumerative Combinatorics 1. 1997, Cambridge Studies in Advanced Mathematics. Vol. 49. Cambridge University Press.
The PartiallyOrderedSets[NumberOfElements] command was introduced in Maple 2025.
For more information on Maple 2025 changes, see Updates in Maple 2025.
See Also
PartiallyOrderedSets[AdjacencyList]
PartiallyOrderedSets[AreEqual]
PartiallyOrderedSets[AreIsomorphic]
PartiallyOrderedSets[ConnectedComponents]
PartiallyOrderedSets[DrawGraph]
PartiallyOrderedSets[GreatestElement]
PartiallyOrderedSets[GreatestLowerBound]
PartiallyOrderedSets[Height]
PartiallyOrderedSets[IsAntichain]
PartiallyOrderedSets[IsChain]
PartiallyOrderedSets[IsFaceLattice]
PartiallyOrderedSets[IsGraded]
PartiallyOrderedSets[IsLattice]
PartiallyOrderedSets[IsRanked]
PartiallyOrderedSets[LeastElement]
PartiallyOrderedSets[LeastUpperBound]
PartiallyOrderedSets[LessEqual]
PartiallyOrderedSets[MaximalAntichains]
PartiallyOrderedSets[MaximalChains]
PartiallyOrderedSets[MaximalElements]
PartiallyOrderedSets[MinimalElements]
PartiallyOrderedSets[NumberOfElements]
PartiallyOrderedSets[PartiallyOrderedSet]
PartiallyOrderedSets[Rank]
PartiallyOrderedSets[ToGraph]
PartiallyOrderedSets[TransitiveClosure]
PartiallyOrderedSets[TransitiveReduction]
PartiallyOrderedSets[Width]
Download Help Document