DataPoints - Maple Help

# Online Help

###### All Products    Maple    MapleSim

Student[NumericalAnalysis]

 DataPoints
 return the data points from a POLYINTERP structure

 Calling Sequence DataPoints(p)

Parameters

 p - a POLYINTERP structure

Description

 • The DataPoints command retrieves the interpolated data points from a POLYINTERP structure.
 • The POLYINTERP structure is created using the PolynomialInterpolation command or the CubicSpline command.

Examples

 > $\mathrm{with}\left(\mathrm{Student}\left[\mathrm{NumericalAnalysis}\right]\right):$
 > $\mathrm{xy}≔\left[\left[0,1\right],\left[\frac{1}{2},1\right],\left[1,\frac{11}{10}\right],\left[\frac{3}{2},\frac{3}{4}\right],\left[2,\frac{7}{8}\right],\left[\frac{5}{2},\frac{9}{10}\right],\left[3,\frac{11}{10}\right],\left[\frac{7}{2},1\right]\right]$
 ${\mathrm{xy}}{≔}\left[\left[{0}{,}{1}\right]{,}\left[\frac{{1}}{{2}}{,}{1}\right]{,}\left[{1}{,}\frac{{11}}{{10}}\right]{,}\left[\frac{{3}}{{2}}{,}\frac{{3}}{{4}}\right]{,}\left[{2}{,}\frac{{7}}{{8}}\right]{,}\left[\frac{{5}}{{2}}{,}\frac{{9}}{{10}}\right]{,}\left[{3}{,}\frac{{11}}{{10}}\right]{,}\left[\frac{{7}}{{2}}{,}{1}\right]\right]$ (1)
 > $\mathrm{p1}≔\mathrm{PolynomialInterpolation}\left(\mathrm{xy},\mathrm{independentvar}=x,\mathrm{method}=\mathrm{lagrange}\right):$
 > $\mathrm{DataPoints}\left(\mathrm{p1}\right)$
 $\left[\left[{0}{,}{1}\right]{,}\left[\frac{{1}}{{2}}{,}{1}\right]{,}\left[{1}{,}\frac{{11}}{{10}}\right]{,}\left[\frac{{3}}{{2}}{,}\frac{{3}}{{4}}\right]{,}\left[{2}{,}\frac{{7}}{{8}}\right]{,}\left[\frac{{5}}{{2}}{,}\frac{{9}}{{10}}\right]{,}\left[{3}{,}\frac{{11}}{{10}}\right]{,}\left[\frac{{7}}{{2}}{,}{1}\right]\right]$ (2)
 > $\mathrm{p2}≔\mathrm{CubicSpline}\left(\mathrm{xy},\mathrm{independentvar}=x\right):$
 > $\mathrm{DataPoints}\left(\mathrm{p2}\right)$
 $\left[\left[{0}{,}{1}\right]{,}\left[\frac{{1}}{{2}}{,}{1}\right]{,}\left[{1}{,}\frac{{11}}{{10}}\right]{,}\left[\frac{{3}}{{2}}{,}\frac{{3}}{{4}}\right]{,}\left[{2}{,}\frac{{7}}{{8}}\right]{,}\left[\frac{{5}}{{2}}{,}\frac{{9}}{{10}}\right]{,}\left[{3}{,}\frac{{11}}{{10}}\right]{,}\left[\frac{{7}}{{2}}{,}{1}\right]\right]$ (3)