ODE Steps for Systems of ODEs with IVP
Overview
Examples
This help page gives a few examples of using the command ODESteps to solve systems of ordinary differential equations with initial values.
See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.
with⁡Student:-ODEs:
high_order_ivp1 ≔ ⅆ3ⅆx3⁢y⁡x+3⁢ⅆ2ⅆx2⁢y⁡x+4⁢ⅆⅆx⁢y⁡x+2⁢y⁡x=0,ⅆⅆx⁢y⁡xx=0|ⅆⅆx⁢y⁡xx=0=−1,ⅆ2ⅆx2⁢y⁡xx=0|ⅆ2ⅆx2⁢y⁡xx=0=2,y⁡0=1
high_order_ivp1≔ⅆ3ⅆx3y⁡x+3⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡x+2⁢y⁡x=0,ⅆ2ⅆx2y⁡xx=0|ⅆ2ⅆx2y⁡xx=0=2,ⅆⅆxy⁡xx=0|ⅆⅆxy⁡xx=0=−1,y⁡0=1
ODESteps⁡high_order_ivp1
macro⁡Y=y1⁡x,y2⁡x:
ivpsys2 ≔ ∂∂x⁢Y=`%.`⁡Matrix⁡7,1,−4,3,Y,Yx=0|Yx=0=1,1
ivpsys2≔ⅆⅆxy1⁡xⅆⅆxy2⁡x=Typesetting:-_Hold⁡%.⁡RTABLE⁡36893628113800856988,71−43,Matrix,y1⁡xy2⁡x,y1⁡0y2⁡0=11
ODESteps⁡ivpsys2
ivpsys3 ≔ ∂∂x⁢Y=`.`⁡Matrix⁡1,2,3,2,Y+1,ⅇx,Yx=1|Yx=1=0,−1
ivpsys3≔ⅆⅆxy1⁡xⅆⅆxy2⁡x=y1⁡x+2⁢y2⁡x+13⁢y1⁡x+2⁢y2⁡x+ⅇx,y1⁡1y2⁡1=0−1
ODESteps⁡ivpsys3
ivpsys4 ≔ ⅆⅆx⁢w⁡x=w⁡x+2⁢z⁡x,ⅆⅆx⁢z⁡x=3⁢w⁡x+2⁢z⁡x+ⅇx,w⁡−1=2,z⁡−1=−2
ivpsys4≔ⅆⅆxw⁡x=w⁡x+2⁢z⁡x,ⅆⅆxz⁡x=3⁢w⁡x+2⁢z⁡x+ⅇx,w⁡−1=2,z⁡−1=−2
ODESteps⁡ivpsys4
See Also
diff
Int
Student
Student[ODEs]
Student[ODEs][ODESteps]
Download Help Document