ModuloSteps - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[Basics]

  

ModuloSteps

  

generate steps for evaluating modulos

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ModuloSteps( expr )

ModuloSteps( expr, implicitmultiply = true )

Parameters

expr

-

string or expression

implicitmultiply

-

(optional) truefalse

output = ...

-

(optional) option to control the return value

displaystyle = ...

-

(optional) option to control the layout of the steps

Description

• 

The ModuloSteps command accepts an expression that is expected to contain modulos and displays the steps required to evaluate each modulo given.

• 

If expr is a string, then it is parsed into an expression using InertForm:-Parse so that no automatic simplifications are applied, and thus no steps are missed.  

• 

The implicitmultiply option is only relevant when expr is a string.  This option is passed directly on to the InertForm:-Parse command and will cause things like 2x to be interpreted as 2*x, but also, xyz to be interpreted as x*y*z.

• 

The output and displaystyle options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.  

• 

This function is part of the Student:-Basics package.

Examples

withStudent:-Basics:

ModuloSteps4 mod 7

4mod7Evaluate modulo, which is the remainder of4divided by74

(1)

ModuloSteps((3 + 5 + 6) mod 4) + ((5*6*7) mod 3)

3+5+6mod4+567mod3Examine term3+5+6mod4Apply theadditionmod rule:a+bmodm=amodm+bmodmmodm3+5mod4+6mod4mod4Examine term5mod4Evaluate modulo, which is the remainder of5divided by41This gives:3+1+6mod4mod4Examine term6mod4Evaluate modulo, which is the remainder of6divided by42This gives:3+1+2mod4Simplify6mod4Evaluate modulo, which is the remainder of6divided by42This gives:2+567mod3Examine term567mod3Apply theproductmod rule:abmodm=amodmbmodmmodm5mod36mod37mod3mod3Examine term5mod3Evaluate modulo, which is the remainder of5divided by32This gives:26mod37mod3mod3Examine term6mod3Evaluate modulo, which is the remainder of6divided by30This gives:207mod3mod3Examine term7mod3Evaluate modulo, which is the remainder of7divided by31This gives:201mod3Simplify0mod3Evaluate modulo, which is the remainder of0divided by30This gives:2+0Simplify2

(2)

ModuloSteps(2^200 mod 24) + (2^201 mod 24)

2200mod24+2201mod24Examine term2200mod24Apply exponent rule:anm+c=anmac272824mod24Evaluate inside exponents1282816mod24Apply theproductmod rule:abmodm=amodmbmodmmodm12828mod2416mod24Examine term12828mod24Apply thepowermod rule:abmodm=amodmbmodm128mod2428mod24Examine term128mod24Evaluate modulo, which is the remainder of128divided by248This gives:828mod24Apply exponent rule:anm+c=anmac8398mod24Evaluate inside exponents51298mod24Apply theproductmod rule:abmodm=amodmbmodmmodm5129mod248mod24Examine term5129mod24Apply thepowermod rule:abmodm=amodmbmodm512mod249mod24Examine term512mod24Evaluate modulo, which is the remainder of512divided by248This gives:89mod24Apply exponent rule:anm=anm833mod24Evaluate inside exponents5123mod24Apply thepowermod rule:abmodm=amodmbmodm512mod243mod24Examine term512mod24Evaluate modulo, which is the remainder of512divided by248This gives:83mod24Evaluate inside exponents512mod24Evaluate modulo, which is the remainder of512divided by248This gives:88mod24Simplify64mod24Evaluate modulo, which is the remainder of64divided by2416This gives:1616mod24Simplify256mod24Evaluate modulo, which is the remainder of256divided by2416This gives:16+2201mod24Examine term2201mod24Apply exponent rule:anm+c=anmac272825mod24Evaluate inside exponents1282832mod24Apply theproductmod rule:abmodm=amodmbmodmmodm12828mod2432mod24mod24Examine term12828mod24Apply thepowermod rule:abmodm=amodmbmodm128mod2428mod24Examine term128mod24Evaluate modulo, which is the remainder of128divided by248This gives:828mod24Apply exponent rule:anm+c=anmac8398mod24Evaluate inside exponents51298mod24Apply theproductmod rule:abmodm=amodmbmodmmodm5129mod248mod24Examine term5129mod24Apply thepowermod rule:abmodm=amodmbmodm512mod249mod24Examine term512mod24Evaluate modulo, which is the remainder of512divided by248This gives:89mod24Apply exponent rule:anm=anm833mod24Evaluate inside exponents5123mod24Apply thepowermod rule:abmodm=amodmbmodm512mod243mod24Examine term512mod24Evaluate modulo, which is the remainder of512divided by248This gives:83mod24Evaluate inside exponents512mod24Evaluate modulo, which is the remainder of512divided by248This gives:88mod24Simplify64mod24Evaluate modulo, which is the remainder of64divided by2416This gives:1632mod24mod24Examine term32mod24Evaluate modulo, which is the remainder of32divided by248This gives:168mod24Simplify128mod24Evaluate modulo, which is the remainder of128divided by248This gives:16+8Simplify24

(3)

Compatibility

• 

The Student:-Basics:-ModuloSteps command was introduced in Maple 2024.

• 

For more information on Maple 2024 changes, see Updates in Maple 2024.

See Also

Student:-Basics

Student:-Basics:-ExpandSteps

Student:-Basics:-SimplifySteps