Chapter 2: Space Curves
Section 2.7: Frenet-Serret Formalism
Example 2.7.14
If C is the curve given by Rp=lncosp i+lnsinp j+2p k, p∈0,π/2, in Example 2.6.3,
Obtain its Darboux vector d.
Verify the three identities in Table 2.7.3.
Show that T′×T″=κ2d, where primes denote differentiation with respect to arc length s.
Solution
Mathematical Solution
Part (a)
By the usual techniques, obtain the items in Table 2.7.14(a).
T=−sin⁡p2cos⁡p22cosp⁢sinp
N=−2cosp⁢sinp−2cosp⁢sinp2⁢cos⁡p2−1
B=cos⁡p2−sin⁡p22cosp⁢sinp
ρ=1cos⁡p⁢sin⁡p
κ=2cospsinp
τ= −2cospsinp
Table 2.7.14(a) Frenet formalism
The Darboux vector is then
d=τ T+κ B
= −2cospsinp−sin⁡p2cos⁡p22cosp⁢sinp+2cospsinpcos⁡p2−sin⁡p22cosp⁢sinp
=2cospsinp1−10
Part (b)
The derivatives of the vectors in the TNB-frame must be taken with respect to the arc length s. Since R is given in terms of the parameter p, the chain rule must be invoked. Hence, dds=1ρ ddp.
dTdp1ρ = −2⁢cos⁡p2⁢sin⁡p2−2⁢cos⁡p2⁢sin⁡p2sin⁡p⁢cos⁡p⁢2⁢2⁢cos⁡p2−1 = d×T
dNdp1ρ = −sin⁡p⁢cos⁡p⁢2⁢2⁢cos⁡p2−1−sin⁡p⁢cos⁡p⁢2⁢2⁢cos⁡p2−1−4⁢cos⁡p2⁢sin⁡p2 = d×N
dBdp1ρ = −2⁢cos⁡p2⁢sin⁡p2−2⁢cos⁡p2⁢sin⁡p2sin⁡p⁢cos⁡p⁢2⁢2⁢cos⁡p2−1 = d×B
Part (c)
dTdp1ρ×d2Tdp21ρ2 = 22cos3psin3p1−10 = κ2 d
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Execute the BasisFormat command at the right, or use the task template to set the display of vectors as columns.
BasisFormatfalse:
Frenet formalism: ρ,κ,τ,T,N,B
Contest Menu: Assign Name
R=lncosp,lnsinp,2p→assign
Keyboard the norm bars.
Calculus palette: Differentiation operator
Context Panel: Evaluate and Display Inline
Context Panel: Simplify≻Assuming Real Range≻p∈0,π/2
Context Panel: Assign to a Name≻rho
ⅆⅆ p R = 1cos⁡p2⁢sin⁡p2→assuming real range1cos⁡p⁢sin⁡p→assign to a nameρ
Write R and press the Enter key.
Context Panel: Student Vector Calculus≻Frenet Formalism≻Curvature≻p
Context Panel: Assign to a Name≻kappa
R
ln⁡cos⁡pln⁡sin⁡p2⁢p
→curvature
12⁢4⁢12⁢sin⁡p⁢2cos⁡p3⁢sin⁡p−2cos⁡p⁢sin⁡p31cos⁡p2⁢sin⁡p23/2⁢cos⁡p−11cos⁡p2⁢sin⁡p2−sin⁡p21cos⁡p2⁢sin⁡p2⁢cos⁡p22+4⁢−12⁢cos⁡p⁢2cos⁡p3⁢sin⁡p−2cos⁡p⁢sin⁡p31cos⁡p2⁢sin⁡p23/2⁢sin⁡p−11cos⁡p2⁢sin⁡p2−cos⁡p21cos⁡p2⁢sin⁡p2⁢sin⁡p22+2⁢cos⁡p6⁢sin⁡p6⁢2cos⁡p3⁢sin⁡p−2cos⁡p⁢sin⁡p321cos⁡p2⁢sin⁡p2
→assuming real range
2⁢cos⁡p⁢sin⁡p
→assign to a name
κ
Write R. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻ Frenet Formalism≻Torsion≻p
Context Panel: Assign to a Name≻tau
R = ln⁡cos⁡pln⁡sin⁡p2⁢p→torsion−2⁢cos⁡p⁢sin⁡p→assign to a nameτ
Context Panel: Student Vector Calculus≻Frenet Formalism≻TNB Frame≻p
Context Panel: Simplify≻Symbolic
Context Panel: Assign to a Name≻Q
→TNB frame
−sin⁡p1cos⁡p2⁢sin⁡p2⁢cos⁡pcos⁡p1cos⁡p2⁢sin⁡p2⁢sin⁡p21cos⁡p2⁢sin⁡p2,−21cos⁡p2⁢sin⁡p2−21cos⁡p2⁢sin⁡p22⁢cos⁡p2−1cos⁡p⁢sin⁡p⁢1cos⁡p2⁢sin⁡p2,cos⁡p2−sin⁡p22⁢cos⁡p⁢sin⁡p
→simplify symbolic
−sin⁡p2cos⁡p22⁢cos⁡p⁢sin⁡p,−2⁢cos⁡p⁢sin⁡p−2⁢cos⁡p⁢sin⁡p2⁢cos⁡p2−1,cos⁡p2−sin⁡p22⁢cos⁡p⁢sin⁡p
Q
Context Panel: Assign Name
T=Q1→assign
N=Q2→assign
B=Q3→assign
Obtain the Darboux vector
Context Panel: Assign to a Name≻d
τ T+κ B = cos⁡p⁢sin⁡p3⁢2+cos⁡p3⁢sin⁡p⁢2−cos⁡p3⁢sin⁡p⁢2−cos⁡p⁢sin⁡p3⁢20→simplify symbolic2⁢cos⁡p⁢sin⁡p−2⁢cos⁡p⁢sin⁡p0→assign to a named
Calculus palette: Differentiation operator or cross-product operator
T′=d×T
ⅆⅆ p T/ρ = −2⁢sin⁡p2⁢cos⁡p2−2⁢sin⁡p2⁢cos⁡p2sin⁡p⁢cos⁡p⁢−2⁢sin⁡p2+2⁢cos⁡p2→simplify symbolic−2⁢sin⁡p2⁢cos⁡p2−2⁢sin⁡p2⁢cos⁡p22⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1
d×T = −2⁢sin⁡p2⁢cos⁡p2−2⁢sin⁡p2⁢cos⁡p2cos⁡p3⁢sin⁡p⁢2−cos⁡p⁢sin⁡p3⁢2→simplify symbolic−2⁢sin⁡p2⁢cos⁡p2−2⁢sin⁡p2⁢cos⁡p22⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1
N′=d×N
ⅆⅆ p N/ρ = sin⁡p⁢cos⁡p⁢2⁢sin⁡p2−2⁢cos⁡p2sin⁡p⁢cos⁡p⁢2⁢sin⁡p2−2⁢cos⁡p2−4⁢sin⁡p2⁢cos⁡p2→simplify symbolic−2⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1−2⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1−4⁢sin⁡p2⁢cos⁡p2
d×N = −2⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1−2⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1−4⁢sin⁡p2⁢cos⁡p2→simplify symbolic−2⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1−2⁢cos⁡p⁢sin⁡p⁢2⁢cos⁡p2−1−4⁢sin⁡p2⁢cos⁡p2
B′=d×B
ⅆⅆ p B/ρ = −2⁢sin⁡p2⁢cos⁡p2−2⁢sin⁡p2⁢cos⁡p2sin⁡p⁢cos⁡p⁢−2⁢sin⁡p2+2⁢cos⁡p2→simplify symbolic−2⁢sin⁡p2⁢