IndefiniteSum - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

IndefiniteSum

  

calculate indefinite sum

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

IndefiniteSum(T, n)

Parameters

T

-

function of n

n

-

variable

Description

• 

The IndefiniteSum(T,n) command computes a function G such that Tn=En1·Gn if it exists.

• 

The classes of functions T supported are rational functions, hypergeometric terms, and those for which the minimal annihilator in KnEn for T can be computed.

Examples

withSumToolsHypergeometric:

T1n2+sqrt5n1

T1n2+5n1

(1)

SumT,n=IndefiniteSumT,n

n1n2+5n1=13n32+5213n12+5213n+12+52

(2)

Tn32n

Tn32n

(3)

SumT,n=IndefiniteSumT,n

nn32n=n36n2+18n262n

(4)

TΓn+1ΓnΨn

TΓn+1ΓnΨn

(5)

SumT,n=IndefiniteSumT,n

nΓn+1ΓnΨn=n4n36n26n5Γn+1ΓnΨnn2+n+3n5n410n39n22Γn+2Γn+1Ψn+1nn2+n+3+n+1n35n2+4n2Γn+3Γn+2Ψn+2nn2+n+3

(6)

References

  

Abramov, S.A. "Indefinite sums of rational functions." Proc. ISSAC'95, pp. 303-308. 1995.

  

Abramov, S.A., and van Hoeij, M. "Integration of solutions of linear functional equations." Integral Transformations and Special Functions, Vol. 8 No. 1-2, (1999): 3-12.

  

Gosper, R.W., Jr. "Decision procedure for indefinite hypergeometric summation." Proc. Natl. Acad. Sci. USA, Vol. 75, (1977): 40-42.

See Also

sum

SumTools[Hypergeometric]

SumTools[Hypergeometric][DefiniteSum]

SumTools[Hypergeometric][Gosper]

SumTools[Hypergeometric][SumDecomposition]

SumTools[IndefiniteSum][AccurateSummation]