Implicit Differentiation with Three Variables
Description
Using implicit differentiation, compute the derivative ∂z∂x for the function zx,y defined implicitly by the equation fx,y,z=gx,y,z.
Enter equation:
x2 +y2+z2=1
x2+y2+z2=1
Obtain ∂z∂x:
implicitdiff, zx,y, x
−xz
Stepwise Calculation:
Replace z with zx,y:
eval,z=zx,y
x2+y2+z⁡x,y2=1
Apply ∂ ∂x:
diff,x
2⁢x+2⁢z⁡x,y⁢∂∂x⁢z⁡x,y=0
Isolate ∂z∂x:
isolate, diffzx,y,x
∂∂x⁢z⁡x,y=−xz⁡x,y
Replace zx,y with z:
zx=evalrhs,zx,y=z
zx=−xz
Commands Used
diff, eval, implicitdiff, isolate, rhs
Download Help Document
What kind of issue would you like to report? (Optional)