VectorCalculus Coordinate Systems
Description
References
The VectorCalculus package supports the following coordinate systems:
In two dimensions - bipolar, cardioid, cassinian, cartesian, elliptic, hyperbolic, invcassinian, logarithmic, logcosh, parabolic, polar, rose, and tangent.
In three dimensions - bipolarcylindrical, bispherical, cardioidal, cardioidcylindrical, cartesian, casscylindrical, conical, cylindrical, ellcylindrical, hypercylindrical, invcasscylindrical, logcoshcylindrical, logcylindrical, oblatespheroidal, paraboloidal, paracylindrical, prolatespheroidal, rosecylindrical, sixsphere, spherical, tangentcylindrical, tangentsphere, and toroidal.
Note: Only the positive roots have been used for the following transformations:
In two dimensions - cassinian, hyperbolic, invcassinian, and rose
In three dimensions - casscylindrical, conical, hypercylindrical, invcasscylindrical, and rosecylindrical
The conversions from the various coordinate systems to cartesian (rectangular) coordinates in 2-space
u,⁢v⁢→⁢x,⁢y
are given by:
bipolar: (Spiegel)
x=sinh⁡vcosh⁡v−cos⁡u
y=sin⁡ucosh⁡v−cos⁡u
cardioid:
x=u2−v22⁢u2+v22
y=u⁢vu2+v22
cartesian:
x=u
y=v
cassinian: (Cassinian-oval)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12
elliptic:
x=cosh⁡u⁢cos⁡v
y=sinh⁡u⁢sin⁡v
hyperbolic:
x=u2+v2+u
y=u2+v2−u
invcassinian: (inverse Cassinian-oval)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
logarithmic:
x=a⁢ln⁡u2+v2π
y=2⁢a⁢arctan⁡vuπ
logcosh: (ln cosh)
x=a⁢ln⁡cosh⁡u2−sin⁡v2π
y=2⁢a⁢arctan⁡tanh⁡u⁢tan⁡vπ
parabolic:
x=u22−v22
y=u⁢v
polar:
x=u⁢cos⁡v
y=u⁢sin⁡v
rose:
x=u2+v2+uu2+v2
y=u2+v2−uu2+v2
tangent:
x=uu2+v2
y=vu2+v2
The conversions from the various coordinate systems to cartesian coordinates in 3-space
u,⁢v,⁢w⁢→⁢x,⁢y,⁢z
are given as follows (the author is indicated where applicable):
bipolarcylindrical: (Spiegel)
x=a⁢sinh⁡vcosh⁡v−cos⁡u
y=a⁢sin⁡ucosh⁡v−cos⁡u
z=w
bispherical:
x=sin⁡u⁢cos⁡wd
y=sin⁡u⁢sin⁡wd
z=sinh⁡vd where d=cosh⁡v−cos⁡u
cardioidal:
x=u⁢v⁢cos⁡wu2+v22
y=u⁢v⁢sin⁡wu2+v22
u2−v22⁢u2+v22
cardioidcylindrical:
casscylindrical: (Cassinian-oval cylinder)
conical:
x=u⁢v⁢wa⁢b
y=u⁢−b2+v2⁢b2−w2a2−b2b
z=u⁢a2−v2⁢a2−w2a2−b2a
cylindrical:
ellcylindrical: (elliptic cylindrical)
x=a⁢cosh⁡u⁢cos⁡v
y=a⁢sinh⁡u⁢sin⁡v
hypercylindrical: (hyperbolic cylinder)
invcasscylindrical: (inverse Cassinian-oval cylinder)
logcylindrical: (logarithmic cylinder)
logcoshcylindrical: (ln cosh cylinder)
oblatespheroidal:
x=a⁢cosh⁡u⁢sin⁡v⁢cos⁡w
y=a⁢cosh⁡u⁢sin⁡v⁢sin⁡w
z=a⁢sinh⁡u⁢cos⁡v
paraboloidal: (Spiegel)
x=u⁢v⁢cos⁡w
y=u⁢v⁢sin⁡w
z=u22−v22
paracylindrical:
prolatespheroidal:
x=a⁢sinh⁡u⁢sin⁡v⁢cos⁡w
y=a⁢sinh⁡u⁢sin⁡v⁢sin⁡w
z=a⁢cosh⁡u⁢cos⁡v
rosecylindrical:
sixsphere: (6-sphere)
x=uu2+v2+w2
y=vu2+v2+w2
z=wu2+v2+w2
spherical:
x=u⁢cos⁡w⁢sin⁡v
y=u⁢sin⁡w⁢sin⁡v
z=u⁢cos⁡v
tangentcylindrical:
tangentsphere:
x=u⁢cos⁡wu2+v2
y=u⁢sin⁡wu2+v2
z=vu2+v2
toroidal:
x=a⁢sinh⁡v⁢cos⁡wd
y=a⁢sinh⁡v⁢sin⁡wd
z=a⁢sin⁡ud where d=cosh⁡v−cos⁡u
The a, b, and c values in the above coordinate transformations can be queried and set by using the GetCoordinateParameters and SetCoordinateParameters commands from the VectorCalculus package. The default values are a=1, b=12, and c=13.
The GetCoordinateParameters command returns an expression sequence containing the current values of a, b, and c.
The SetCoordinateParameters command takes either 1, 2, or 3 arguments, and sets the values of a, a and b, or a, b, and c respectively.
Moon, P., and Spencer, D.E. Field Theory Handbook. 2d ed. Berlin: Springer-Verlag, 1971.
Spiegel, Murray R. Mathematical Handbook of Formulas and Tables. New York: McGraw Hill Book Company, 1968, pp. 126-130.
See Also
VectorCalculus
VectorCalculus[AddCoordinates]
VectorCalculus[GetCoordinateParameters]
VectorCalculus[GetCoordinates]
VectorCalculus[SetCoordinateParameters]
VectorCalculus[SetCoordinates]
Download Help Document
What kind of issue would you like to report? (Optional)