Zeta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Zeta

The Riemann Zeta function; the Hurwitz Zeta function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Zeta(z)

Zeta(n, z)

Zeta(n, z, v)

Parameters

n

-

algebraic expression; understood to be a non-negative integer

z

-

algebraic expression

v

-

algebraic expression; understood not to be a non-positive integer

Description

• 

The Zeta function (zeta function) is defined for Re(z)>1 by

  

and is extended to the rest of the complex plane (except for the point z=1) by analytic continuation.  The point z=1 is a simple pole.

• 

The call Zeta(n, z) gives the nth derivative of the Zeta function,

• 

You can enter the command Zeta using either the 1-D calling sequence or in 2-D using command completion.

• 

The optional third parameter v changes the expression of summation to 1/(i+v)^z, so that for Re(z)>1,

  

and, again, this is extended to the complex plane less the point 1 by analytic continuation.  The point z=1 is a simple pole for the function Zeta(0, z, v).

  

The third parameter, v, can be any complex number which is not a non-positive integer.

• 

The function Zeta(0, z, v) is often called the Hurwitz Zeta function or the Generalized Zeta function.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The following plot shows a plot of the Zeta function along the critical line for real values of t from 0 to 34.

References

  

Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953. Vol. 1.

See Also

initialfunctions

JacobiZeta

MultiZeta

PolynomialTools[Hurwitz]

 


Download Help Document