Solution Steps - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Solution Steps

Maple 2021 includes numerous new algorithms for showing step-by-step solutions for a variety of problems in mathematics.

 

Long Division

Factoring

Solve

Calculus: Integration, Differentiation, and Limits

Differential Equations

Matrix Inverse

Eigenvalues

Eigenvectors

Gauss Jordan Elimination

Share your solution

Where did I go wrong?

Long Division

The LongDivision command gives a visual solution to an arithmetic or polynomial long division problem, showing all of the intermediate steps.

withStudent:-Basics:

LongDivision48x4+284x3+620x2+593x+210,2x+3

%+2x,3x2224x3+106x2+151x+70)x2148x41+284x31+620x21+593x1+21048x4+72x3.212x3+620x2212x3+318x2.302x2+593x302x2+453x.140x+210140x+210.0

(1.1)

LongDivision1001,30, 'decimaldigits'=4;

 — — — —3—3—.—3—6—6—6— 30 ) 1001.0000       9—0—       101        9—0—        110         9—0—         200         1—8—0—          200          1—8—0—           200           1—8—0—            20

(1.2)

Factoring

The FactorSteps command shows the steps in factoring a polynomial.

withStudent:-Basics:

FactorStepsx3+6x2+12x+8

â–«1. Trial Evaluationsâ—¦Rewrite in standard formâ—¦The factors of the constant coefficient 8 are:C=1,2,4,8â—¦Trial evaluations of x in ±C find x = −2 satisfies the equation, so x+2 is a factorâ—¦Divide by x+2x22x2+4x+4)x21x31+6x21+12x1+8x3+2x2.4x2+12x4x2+8x.4x+84x+8.0â—¦Quotient times divisor from long division•2. Examine term:x2+4x+4â–«3. Apply the AC Methodâ—¦Examine quadraticâ—¦Look at the coefficients, Ax2+Bx+CA=1,B=4,C=4â—¦Find factors of |AC| = |14| = 41,2,4â—¦Find pairs of the above factors, which, when multiplied equal 4,â—¦Which pairs of these factors have a sum of B = 4? Found:=4â—¦Split the middle term to use above pairâ—¦Factor x out of the first pairâ—¦Factor 2 out of the second pairâ—¦x+2 is a common factorâ—¦Group common factorThis gives:•4. This gives:

(2.1)

Solve

The SolveSteps command shows the steps in solving an equation or system of equations

withStudent:-Basics:

SolveSteps5ⅇ4x=16

Let's solve=16▫Convert from exponential equation◦Divide both sides by 5=◦Simplify=165◦Apply ln to each side=◦Apply ln rule: ln(e^b) = b4x=ln165•Divide both sides by 4=•Exact solutionx=ln1654•Approximate solutionx=0.2907877025

(3.1)

SolveSteps12x+y=18,7x8y=32

Let's solve=18,=32•Pick the 2nd equation to solve for y=32â–«A: isolate for yâ—¦Subtract 7x from both sides=â—¦Simplify=â—¦Divide both sides by −8=â—¦Simplifyy=â—¦Solutiony=4+7x8•Substitute the value of y=4+7x8 into the 1st equation of the system=18â–«Solve for xâ—¦Evaluate subtraction and addition103x84=18â—¦Add 4 to both sides=â—¦Simplify=22â—¦Divide both sides by 1038=â—¦Simplifyx=â—¦Rewrite division as multiplication by reciprocalx=â—¦Multiply fraction and reduce by gcdx=176103•Substitute x=176103 into equation A y=â–«Solve for yâ—¦Evaluate multiplication and divisiony=â—¦Evaluate subtraction and additiony=258103•Solutionx=176103,y=258103

(3.2)

Calculus: Integration, Differentiation, and Limits

The ShowSolution command has been improved to show more detailed steps when solving integration, differentiation, and limit problems.

with Student:-Calculus1 :

ShowSolutionsinx2ⅆx

Integration Stepssinx2ⅆxâ–«1. Rewriteâ—¦Equivalent expressionsinx2=12cos2x2This gives:12cos2x2ⅆxâ–«2. Apply the sum ruleâ—¦Recall the definition of the sum rulefx+gxⅆx=fxⅆx+gxⅆxfx=12gx=cos2x2This gives:12ⅆx+cos2x2ⅆxâ–«3. Apply the constant rule to the term 12ⅆxâ—¦Recall the definition of the constant ruleCⅆx=Cxâ—¦This means12ⅆx=x2We can now rewrite the integral as:x2+cos2x2ⅆxâ–«4. Apply the constant multiple rule to the term cos2x2ⅆxâ—¦Recall the definition of the constant multiple rulefxⅆx=fxⅆxâ—¦This means:cos2x2ⅆx=cos2xⅆx2We can rewrite the integral as:x2cos2xⅆx2â–«5. Apply a change of variables to rewrite the integral in terms of uâ—¦Let u beu=2xâ—¦Isolate equation for xx=u2â—¦Differentiate both sides=2â—¦Substitute the values for x and dx back into the originalcos2xⅆx=cosu2ⅆuThis gives:x2cosu2ⅆu2â–«6. Apply the constant multiple rule to the term cosu2ⅆuâ—¦Recall the definition of the constant multiple rulefuⅆu=fuⅆuâ—¦This means:cosu2ⅆu=cosuⅆu2We can rewrite the integral as:x2cosuⅆu4â–«7. Evaluate the integral of cos(u)â—¦Recall the definition of the cos rulecosuⅆu=sinuThis gives:x2sinu4â–«8. Revert change of variableâ—¦Variable we defined in step 5u=2xThis gives:x2sin2x4

(4.1)

ShowSolution Limit sinxx, x=0  

 

 

 

 

 

 

 

 

Diffx2 sinx, x

ⅆⅆxx2sinx

(4.2)

ShowSolution  

 

 

 

 

 

 

 

 

 

 

Differential Equations

The ODESteps command provides detailed steps when solving ordinary differential equations and systems of ODEs.

with Student:-ODEs :

ode1t2zt+1+zt2t1ⅆⅆtzt=0

ode1t2zt+1+zt2t1ⅆⅆtzt=0

(5.1)

ODESteps ode1 

Let's solvet2zt+1+zt2t1ⅆⅆtzt=0•Highest derivative means the order of the ODE is 1ⅆⅆtzt•Separate variablesⅆⅆtztzt2zt+1=t2t1•Integrate both sides with respect to tⅆⅆtztzt2zt+1ⅆt=t2t1ⅆt+_C1•Evaluate integralzt22zt+lnzt+1=t22tlnt1+_C1

(5.2)

ivp2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1

ivp2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1

(5.3)

ODEStepsivp2 

Let's solveⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1•Isolate 2nd derivativeⅆ2ⅆx2yx=ⅆⅆxyx+xⅇx•Group terms with yx on the lhs of the ODE and the rest on the rhs of the ODE, ODE is linearⅆ2ⅆx2yxⅆⅆxyx=xⅇx•Characteristic polynomial of homogeneous ODEr2r=0•Factor the characteristic polynomialrr1=0•Roots of the characteristic polynomialr=0,1•1st solution of the homogeneous ODEy1x=1•2nd solution of the homogeneous ODEy2x=ⅇx•General solution of the ODEyx=_C1y1x+_C2y2x+ypx•Substitute in solutions of the homogeneous ODEyx=_C1+_C2ⅇx+ypxâ–«Find a particular solution ypx of the ODEâ—¦Use variation of paramaters to find yp here fx is the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=xⅇxâ—¦Wronskian of solutions of the homogeneous equationWy1x,y2x=1ⅇx0ⅇxâ—¦Compute WronskianWy1x,y2x=ⅇxâ—¦Substitute functions into equation for ypxypx=xⅇxⅆx+ⅇxxⅆxâ—¦Compute integralsypx=ⅇxx22x+22•Substitute particular solution into general solution to ODEyx=_C1+_C2ⅇx+ⅇxx22x+22•Use initial condition y0=11=_C1+_C2+1•Compute derivative of the solutionⅆⅆxyx=_C2ⅇx+ⅇxx22x+22+ⅇx2x22•Use the initial condition ⅆⅆxyxx=0|ⅆⅆxyxx=0=00=_C2•Solve for _C1 and _C2_C1=0,_C2=0•Solution to the IVPyx=ⅇxx22x+22

(5.4)

Matrix Inverse

The InverseTutor command now has an option to return detailed steps for finding the matrix inverse.

withStudent:-LinearAlgebra:

M  337248−2−46:

InverseTutor M, output=steps 

Compute the inverse of this matrix3−37248−2−46•Matrix augmented with identity3−37100248010−2−46001• Multiply row 1 by 1/31−1731300248010−2−46001• Add -2 times row 1 to row 21−1731300061032310−2−46001• Add 2 times row 1 to row 31−17313000610323100−63232301• Multiply row 2 by 1/61−17313000159191600−63232301• Add 1 times row 2 to row 110269291600159191600−63232301• Add 6 times row 2 to row 310269291600159191600014011• Multiply row 3 by 1/1410269291600159191600010114114• Add -26/9 times row 3 to row 110029512613630159191600010114114• Add -5/9 times row 3 to row 210029512613630101986351260010114114•We have found the inverse29512613631986351260114114

(6.1)

Eigenvalues

The EigenvaluesTutor command now has an option to return detailed steps for finding Eigenvalues.

withStudent:-LinearAlgebra:

M  120232021:

EigenvaluesTutor M, output=steps 

Compute the Eigenvalues120232021•Calculate A=M-t*Id1t2023t2021t•Find the determinant; this is also called the characteristic polynomial of M.t3+5t2+t5•Solve; the eigenvalues are the roots of the characteristic polynomial.51−1

(7.1)

Eigenvectors

The EigenvectorsTutorcommand now has an option to return detailed steps for finding Eigenvectors.

withStudent:-LinearAlgebra:

M  120232021:

EigenvectorsTutor M, output=steps 

Gauss Jordan Elimination

The GaussJordanEliminationTutor command now has an option to return detailed steps for finding Eigenvalues.

withStudent:-LinearAlgebra:

M  120323250215:

GaussJordanEliminationTutor M, output=steps 

Gauss-Jordan Reduce120323250215• Add -2 times row 1 to row 212030−12−10215• Multiply row 2 by -1120301−210215• Add -2 times row 2 to row 1104101−210215• Add -2 times row 2 to row 3104101−210053• Multiply row 3 by 1/5104101−2100135• Add -4 times row 3 to row 11007501−2100135• Add 2 times row 3 to row 21007501011500135

(9.1)

Share your solution

There's a connection to the new product Maple Learn as well.  These commands can output a link to a Maple Learn document containing the solution steps.  Maple Learn is a dynamic online environment for teaching and learning math, focused on high-school to second year university.  For more about Maple Learn, visit https://www.maplesoft.com/products/learn/

with Student:-Calculus1 :

cv  ShowSolution Int sinx2, x, output=canvas:

DocumentTools:-Canvas:-ShareCanvas cv 

https://learn.maplesoft.com/#/?d=COOROFHKHLBHPMHSIOFJCGHPPSARFJMSNQPFCRKKPSNQILITKLDMKNESLUCFNRDKFTELLNIKLMDREJDFFJKJDGMSJUOMPKHKIRJR

withStudent:-LinearAlgebra:

M  120232021:

EigenvectorsTutor M, output=link

https://learn.maplesoft.com/#/?d=HTNRCGNJBSDQKOCNLFFPKFAGANHOHILKPSIOLTPPGPHSBROQBGNPLFDJFFPJEMCMMGKLOHHJGODRNIKUESCIOMIIJTEFOHNUFFNG

 

Where did I go wrong?

In Maple 2021, students can now solve an equation by entering the step-by-step solution to the problem themselves, and then asking Maple for feedback.  The responsive feedback lets the student know whether or not the solution is correct, and if not, where they went wrong. The SolvePractice command generates an interactive application where a student can type in the steps to solve a given problem. Then, the student clicks the button, and the application analyzes their steps and provides feedback.  

withGrading:

SolvePractice3x3+20x2 = x3x29x13,x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These practice-with-feedback sheets can be deployed to the web via Maple Learn:

SolvePractice3x3+20x2 = x3x29x13,x, output=link

https://learn.maplesoft.com/#/?d=BHPKHJMJLGDJJHFTPQKRMLDKAULUCTBPPRHFDOEIANLUCIBOGRATCOHNAQKGMGLULONLAPLKENFUBUFIBMGGHUIJDNJSGFDJBSFK