 FAN - MapleSim Help

FAN

FAN to produce the air flow  Description The FAN component models is used to produce the air flow for the lumped thermal fluid simulation of Air. This component calculates mainly the mass flow rate. Equations

The calculation is changed based on parameter values of Dynamics of mass in the Air Settings component.

The pressure difference is calculated with:

$\mathrm{dp}=\mathrm{min}{\left(\frac{w}{\mathrm{w__max}},1.0\right)}^{2}\cdot \mathrm{MapleSim.Interpolate1D}\left(\mathrm{data},\frac{\mathrm{Q_target}}{\mathrm{min}\left(\frac{w}{\mathrm{w__max}},1.0\right)}\right)$

(*) $\mathrm{MapleSim.Interpolate1D}$ is the function of Lookup table of 1D.

(*) data is specified with:

- If data_source = inline, parameter P-Q curve.

- If data_source = attachment, an attached file (.csv and .xls, .xlsx) is used

- If data_source = file, need to specify the path of file (.csv and .xls, .xlsx). Dynamics of mass = Static Volume flow rate is calculated with: $\mathrm{Q__target}=Q$ Port's mass flow rate is defined with: $\mathrm{port_b.mflow}=-\mathrm{mflow}$ Dynamics of mass = Dynamic Volume flow rate is calculated with: $\frac{ⅆQ}{ⅆt}=\frac{\left(\mathrm{max}\left(\mathrm{Q__target},0.0\right)-Q\right)}{\mathrm{T__const}}$ $\mathrm{mflow}=\mathrm{inStream}\left(\mathrm{port_a.rho}\right)\cdot Q;$ Port's mass flow rate is defined with: $\mathrm{port_a.mflow}=\mathrm{mflow}\mathrm{ port_b.mflow}=-\mathrm{mflow}$

Common definitions are the following:

$\mathrm{dp}=-\mathrm{port_a.p}+\mathrm{port_b.p}$

$v=\frac{Q}{A}$

$\mathrm{port_a.mflow}=\mathrm{mflow}$

$\mathrm{port_b.mflow}=-\mathrm{mflow}$

$\mathrm{port_a.hflow}=\mathrm{inStream}\left(\mathrm{port_b.hflow}\right)$

$\mathrm{port_b.hflow}=\mathrm{inStream}\left(\mathrm{port_a.hflow}\right)$

$\mathrm{port_a.rho}=\mathrm{inStream}\left(\mathrm{port_b.rho}\right)$

$\mathrm{port_b.rho}=\mathrm{inStream}\left(\mathrm{port_a.rho}\right)$

$\mathrm{port_a.T}=\mathrm{inStream}\left(\mathrm{port_b.T}\right)$

$\mathrm{port_b.T}=\mathrm{inStream}\left(\mathrm{port_a.T}\right)$ Variables

 Symbol Units Description Modelica ID $\mathrm{dp}$ $\mathrm{Pa}$ Pressure difference p $\mathrm{mflow}$ $\frac{\mathrm{kg}}{s}$ Mass flow rate mflow $v$ $\frac{m}{s}$ Velocity of flow v $Q$ $\frac{{m}^{3}}{s}$ Volume flow rate Q $\mathrm{Q__target}$ $\frac{{m}^{3}}{s}$ Targeted volume flow rate Q_target Connections

 Name Units Condition Description Modelica ID $\mathrm{port__a}$  Air Port $\mathrm{port_a}$ $\mathrm{port__b}$  Air Port $\mathrm{port_b}$ $w$ $\frac{\mathrm{rad}}{s}$ Fan speed $\mathrm{w}$ $\mathrm{Q__in}$  If External input of Designed volume flow rate is true Designed volume flow rate input. $\mathrm{Qin}$ Parameters

 Symbol Default Units Description Modelica ID $\mathrm{AirSettings1}$ $-$ Specify a component of Air simulation settings Settings $\mathrm{w__max}$ $200$ $\frac{\mathrm{rad}}{s}$ Maximum fan speed w_max $A$ $\frac{\mathrm{Pi}}{0.0025}$ $-$ Flow area A inline - See Data Source Options section above. PQ_datasourcemode $\left[\begin{array}{cc}0& 140\\ \frac{25}{{60}^{2}}& 138\\ \frac{25}{{60}^{2}}& 135\\ \frac{25}{{60}^{2}}& 130\\ \frac{25}{{60}^{2}}& 125\\ \frac{25}{{60}^{2}}& 100\\ \frac{25}{{60}^{2}}& 75\\ \frac{25}{{60}^{2}}& 50\\ \frac{25}{{60}^{2}}& 25\\ \frac{25}{{60}^{2}}& 0\end{array}\right]$ $-$ P-Q characteristic curve, if  = inline.  :Volume flow rate  :Pressure difference PQ_curve $2$ - P-Q characteristic curve, if  =file or attachment. You can specify data by using an attached file or specifying the path of file (.csv and .xls, .xlsx) PQ_data $\mathrm{columns__PQ}$ $\left[2\right]$ - Determines which columns of the data table will be used to interpolate. For example, in an Excel spreadsheet, column A corresponds with 1, column B corresponds with 2, and so on. PQ_columns 0 - Number of rows that are skipped from the top of the data table. PQ_skiprows $\mathrm{smoothness__PQ}$ Table points are linearly interpolated - Determines whether the data points will be interpolated linearly or with a cubic spline. PQ_smoothness $\mathrm{T__const}$ $0.001$ $s$ Time constant for Volume flow rate if Dynamics of mass is Dynamic. T_const $\mathrm{Q__designed}$ $0.1$ $\frac{{m}^{3}}{s}$ use as Designed volume flow rate if Dynamics of mass is Dynamic and External input of Designed volume flow rate is false. Q_designed $\mathrm{false}$ $-$ If External input of Designed volume flow rate is false, input port $\mathrm{Q__in}$ is used as the designed volume flow rate. useExtQ_designed See Also