Quasistationary Singlephase Conductor

Singlephase linear conductor

 Description The Quasistationary Singlephase Conductor (or Conductor) component connects the voltage $v$ with the current $i$ by i = Gv. The conductance G is real. The model includes a Conditional heat port and temperature dependency.
 Equations $i={i}_{p}=-{i}_{n}={G}_{\mathrm{actual}}v$ $v={v}_{p}-{v}_{n}$ ${G}_{\mathrm{actual}}=\frac{{G}_{\mathrm{ref}}}{1+{\mathrm{\alpha }}_{\mathrm{ref}}\left({T}_{\mathrm{hp}}-{T}_{\mathrm{ref}}\right)}$ $\mathrm{\omega }={\stackrel{.}{\mathrm{\gamma }}}_{p}$ ${\mathrm{\gamma }}_{p}={\mathrm{\gamma }}_{n}$ ${P}_{\mathrm{loss}}=\Re \left(v\stackrel{&conjugate0;}{i}\right)$ ${T}_{\mathrm{hp}}=\left\{\begin{array}{cc}{T}_{\mathrm{heatPort}}& \mathrm{Use Heat Port}\\ T& \mathrm{otherwise}\end{array}$

Variables

 Name Units Description Modelica ID $v$ $V$ Complex RMS voltage v $i$ $A$ Complex RMS current i $\mathrm{\omega }$ $\frac{\mathrm{rad}}{s}$ Angular frequency omega ${P}_{\mathrm{loss}}$ $W$ Loss power leaving component via the heat port LossPower ${T}_{\mathrm{hp}}$ $K$ Temperature of HeatPort T_heatPort ${G}_{\mathrm{actual}}$ $S$ Conductance G_actual

Connections

 Name Description Modelica ID ${\mathrm{pin}}_{p}$ Positive pin pin_p ${\mathrm{pin}}_{n}$ Negative pin pin_n $\mathrm{Heat Port}$ heatPort

Parameters

 Name Default Units Description Modelica ID ${G}_{\mathrm{ref}}$ 1 $S$ Reference conductance at ${T}_{\mathrm{ref}}$ G_ref ${T}_{\mathrm{ref}}$ $293.15$ $K$ Reference temperature T_ref ${\mathrm{\alpha }}_{\mathrm{ref}}$ $0$ $\frac{1}{K}$ Temperature coefficient of conductance alpha_ref Use Heat Port $\mathrm{false}$ True means HeatPort is enabled useHeatPort $T$ ${T}_{\mathrm{ref}}$ $K$ Fixed device temperature if Use Heat Port is false T

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.