Impedance - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Quasistationary Singlephase Impedance

Single phase linear impedance

 Description The Quasistationary Singlephase Impedance component connects the complex voltage $v$ with the complex current $i$ by $v=Zv$, where $Z$ is complex. The model includes a Conditional heat port and temperature dependency of the real part of the impedance.
 Equations $i={i}_{p}=-{i}_{n}$ $v={v}_{p}-{v}_{n}=\left({R}_{\mathrm{actual}}+j{X}_{\mathrm{ref}}\right)i$ ${R}_{\mathrm{actual}}={R}_{\mathrm{ref}}\left(1+{\mathrm{\alpha }}_{\mathrm{ref}}\left({T}_{\mathrm{hp}}-{T}_{\mathrm{ref}}\right)\right)$ $\mathrm{\omega }={\stackrel{.}{\mathrm{\gamma }}}_{p}$ ${\mathrm{\gamma }}_{p}={\mathrm{\gamma }}_{n}$ ${P}_{\mathrm{loss}}=\Re \left(v\stackrel{&conjugate0;}{i}\right)$ ${T}_{\mathrm{hp}}=\left\{\begin{array}{cc}{T}_{\mathrm{heatPort}}& \mathrm{Use Heat Port}\\ T& \mathrm{otherwise}\end{array}$

Variables

 Name Units Description Modelica ID $v$ $V$ Complex RMS voltage v $i$ $A$ Complex RMS current i $\mathrm{\omega }$ $\frac{\mathrm{rad}}{s}$ Angular frequency omega ${P}_{\mathrm{loss}}$ $W$ Loss power leaving component via the heat port LossPower ${T}_{\mathrm{hp}}$ $K$ Temperature of HeatPort T_heatPort ${R}_{\mathrm{actual}}$ $\Omega$ Resistance; temperature dependent R_actual

Connections

 Name Description Modelica ID ${\mathrm{pin}}_{p}$ Positive pin pin_p ${\mathrm{pin}}_{n}$ Negative pin pin_n $\mathrm{Heat Port}$ heatPort

Parameters

 Name Default Units Description Modelica ID ${Z}_{\mathrm{ref}}$ Complex impedance ${Z}_{\mathrm{ref}}={R}_{\mathrm{ref}}+j{X}_{\mathrm{ref}}$ Z_ref ${T}_{\mathrm{ref}}$ $293.15$ $K$ Reference temperature T_ref ${\mathrm{\alpha }}_{\mathrm{ref}}$ $0$ $\frac{1}{K}$ Temperature coefficient of resistance alpha_ref Use Heat Port $\mathrm{false}$ True (checked) means heat port is enabled useHeatPort $T$ ${T}_{\mathrm{ref}}$ $K$ Fixed device temperature if useHeatPort = false T Frequency dependent $\mathrm{false}$ Consider frequency dependency, if true frequencyDependent ${f}_{\mathrm{ref}}$ $1$ $\mathrm{Hz}$ Relative frequency, if frequency dependency is considered f_ref

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.