AIM Slip Ring - MapleSim Help

# Online Help

###### All Products    Maple    MapleSim

AIM Slip Ring

Asynchronous induction machine with slip-ring rotor

Description

The AIM Slip Ring component models a three-phase asynchronous induction machine with a slipring rotor. The resistance and stray inductance of the stator and rotor are modeled directly in the stator and rotor phases, with a space phasor transformation and a stator-fixed Air Gap model.

The following losses are modeled:

 • heat losses in the temperature dependent stator winding resistances
 • heat losses in the temperature dependent rotor winding resistances
 • friction losses
 • core losses (only eddy current losses, no hysteresis losses)
 • stray load losses

The turnsRatio parameter can be obtained from the following relationship at standstill with open rotor circuit at nominal voltage and nominal frequency, using the locked-rotor voltage ${V}_{R}$, no-load stator current ${I}_{0}$: $\mathrm{turnsRatio}{V}_{R}={V}_{s}-\left({R}_{s}+j{X}_{s\sigma }\right){I}_{0}$.

Connections

 Name Description Modelica ID $\mathrm{flange}$ Shaft flange ${\mathrm{plug}}_{\mathrm{rn}}$ Negative rotor plug plug_rn ${\mathrm{plug}}_{\mathrm{rp}}$ Positive rotor plug plug_rp ${\mathrm{plug}}_{\mathrm{sn}}$ Negative stator plug plug_sn ${\mathrm{plug}}_{\mathrm{sp}}$ Positive stator plug plug_sp $\mathrm{support}$ Support at which the reaction torque is acting support $\mathrm{thermalPort}$ thermalPort

Parameters

General Parameters

 Name Default Units Description Modelica ID ${f}_{s,\mathrm{nom}}$ $50$ $\mathrm{Hz}$ Nominal frequency fsNominal ${J}_{r}$ $0.29$ $\mathrm{kg}{m}^{2}$ Rotor moment of inertia Jr ${J}_{s}$ ${J}_{r}$ $\mathrm{kg}{m}^{2}$ Stator moment of inertia Js $p$ $2$ Number of pole pairs (Integer) p ${T}_{r,\mathrm{oper}}$ $293.15$ $K$ Operational temperature of rotor resistance TrOperational ${T}_{s,\mathrm{oper}}$ $293.15$ $K$ Operational temperature of stator resistance TsOperational ${V}_{r,\mathrm{locked}}$ [1] $V$ Locked-rotor voltage per phase VrLockedRotor ${V}_{s,\mathrm{nom}}$ $100$ $V$ Nominal stator voltage per phase VsNominal Turns Ratio $1$ Stator turns / rotor turns  (effective number of) turnsRatio Use Support Flange $\mathrm{false}$ True (checked) means enable stator support flange useSupport Use Thermal Port $\mathrm{false}$ True (checked) means thermal port is enabled useThermalPort Use Turns Ratio $\mathrm{true}$ True (checked) means use Turns Ratio parameter useTurnsRatio

[1] $\frac{200\mathrm{\pi }{f}_{s,\mathrm{nom}}{L}_{m}}{\sqrt{{R}_{s}^{2}+4{\mathrm{\pi }}^{2}{f}_{s,\mathrm{nom}}^{2}\left({L}_{m}^{2}+{L}_{s\sigma }^{2}\right)}}$

Brush Losses

 Name Default Units Description Modelica ID $V$ $0$ $V$ Total voltage drop of brushes, if ${i}_{\mathrm{brush}}>{I}_{\mathrm{linear}}$ V ${I}_{\mathrm{linear}}$ $0.01{I}_{{a}_{\mathrm{nom}}}$ $A$ Current indicating linear voltage region of brush voltage drop ILinear

See Brush for details of the brush loss model.

Friction Losses

 Name Default Units Description Modelica ID ${P}_{\mathrm{ref}}$ $0$ $W$ Reference friction losses PRef ${\omega }_{\mathrm{ref}}$ ${\omega }_{\mathrm{nom}}$ $\frac{\mathrm{rad}}{s}$ Reference angular velocity wRef ${p}_{\omega }$ $2$ $V$ Exponent of friction power_w

See Friction for details of the friction loss model.

Rotor Core Losses

 Name Default Units Description Modelica ID ${P}_{\mathrm{ref}}$ $0$ $W$ Reference rotor core losses PRef ${V}_{\mathrm{ref}}$ $1$ $V$ Reference RMS voltage VRef ${\omega }_{\mathrm{ref}}$ $1$ $\frac{\mathrm{rad}}{s}$ Reference angular velocity wRef

See Core for details of the core loss model.

Stator Core Losses

 Name Default Units Description Modelica ID ${P}_{\mathrm{ref}}$ $0$ $W$ Reference rotor core losses PRef ${V}_{\mathrm{ref}}$ $V$ Reference RMS voltage VRef ${\omega }_{\mathrm{ref}}$ $2\pi {f}_{s,\mathrm{nom}}$ $\frac{\mathrm{rad}}{s}$ Reference angular velocity wRef

See Core for details of the core loss model.

Nominal Resistances And Inductances Parameters

 Name Default Units Description Modelica ID ${\mathrm{\alpha }}_{r}$ 0 $\frac{1}{K}$ Temperature coefficient of rotor resistance at 20 degC alpha20r ${\mathrm{\alpha }}_{s}$ 0 $\frac{1}{K}$ Temperature coefficient of stator resistance at 20 degC alpha20s ${L}_{m}$ [1] $H$ Main field inductance Lm ${L}_{r\sigma }$ [1] $H$ Rotor stray inductance per phase Lrsigma ${L}_{r,0}$ ${L}_{r\sigma }$ $H$ Rotor zero sequence inductance w.r.t. rotor side Lrzero ${L}_{s\sigma }$ [1] $H$ Stator stray inductance per phase Lssigma ${L}_{s,0}$ ${L}_{s\sigma }$ $H$ Stator zero sequence inductance Lszero ${R}_{r}$ $0.04$ $\mathrm{\Omega }$ Warm rotor resistance per phase Rr ${R}_{s}$ $0.03$ $\mathrm{\Omega }$ Warm stator resistance per phase Rs ${T}_{r,\mathrm{ref}}$ $293.15$ $K$ Reference temperature of rotor resistance TrRef ${T}_{s,\mathrm{ref}}$ $293.15$ $K$ Reference temperature of stator resistance TsRef

[1] $1.5\frac{1-\sqrt{0.9333}}{\mathrm{\pi }{f}_{s,\mathrm{nom}}}$

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.

 See Also