Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

evalc

symbolic evaluator over the complex field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

evalc(expr)

Parameters

expr

-

any expression

Description

• 

This evalc(expr) calling sequence is used to manipulate complex-valued expressions, such as sina+Ib, by attempting to split such expressions into their real and imaginary parts.  Whenever possible, the output from evalc is put into the canonical form expr1+Iexpr2.

• 

The fundamental assumption that evalc makes is that unknown variables represent real-valued quantities.  Thus, for example, evalc(Re(a+I*b)) = a and evalc(Im(a+I*b)) = b. Furthermore, evalc also assumes that an unknown function of a real variable is real valued.

• 

The assume command can be used to override these default assumptions. For example, assume(u::complex) tells evalc that u is not necessarily real.  Note also that some usages of the assume command implicitly imply real and others do not.  For example assume(u<1) implies u is real but assume(v^2<1) and assume(abs(v)<1) do not imply that v is real.

• 

The evalc command maps onto sets, lists, equations and relations. The evalc command applied to a complex series will be a series with each coefficient in the above canonical form.

• 

When evalc encounters a function whose decomposition into real and imaginary parts is unknown to it (such as f(1+I) where f is not defined), it attempts to put the arguments in the above canonical form.

• 

The standard functions Re, Im, abs, and conjugate are recognized by evalc, and when such functions are invoked from within a call to evalc they apply the assumptions outlined above.  For example, evalc(abs(a+I*b)) = sqrt(a^2+b^2).

• 

A complex-valued expression may be represented to evalc as polar(r,theta) where r is the modulus and theta is the argument of the expression.

• 

For a complete list of the functions initially known to evalc, see evalc/functions.

Examples

evalcsqrt1+I

2+222+I2+222

(1)

evalcsin3+5I

sin3cosh5+Icos3sinh5

(2)

evalc21+I

2cosln2+2Isinln2

(3)

evalcconjugateexpI

cos1Isin1

(4)

evalcfexpa+bI

f&ExponentialE;acosb+I&ExponentialE;asinb

(5)

evalcpolarr&comma;θ

rcosθ+Irsinθ

(6)

evalca+Ib2&comma;lna+Ib

b2+2Iab+a2&comma;lna2+b22+Iarctanb&comma;a

(7)

evalcabsx+Iy=cosux+Ivy

x2+y2=cosuxcoshvyIsinuxsinhvy

(8)

evalcsqrt1u2

u211signumu212+Iu211+signumu212

(9)

Set an assumption on v.  An alternative way to set this assumption is with assume(-1<v,v<1), which implicitly assumes v is real.

assumev::real&comma;v2<1

evalcsqrt1v2

v~2+1

(10)

seriesexpEi1&comma;4Ix&comma;x&comma;3

1+Ei14Ix+12Ei14I2x2+Ox3

(11)

evalc

1+Ci4+ISi4π2x+Ci422Si422+Si4π2π28+ICi4Si4+Ci4π2x2+Ox3

(12)

See Also

assume

evalc/functions

evalf

polar

Re

 


Download Help Document