coords - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Coordinate Systems Supported in Maple

 

Description

References

Description

• 

This help page describes the coordinate systems known, on one hand, to Maple's plotting library and to the changecoords command, and on the other hand, Maple's VectorCalculus package. The VectorCalculus package imposes stricter requirements on its coordinate systems than the plotting library and the changecoords command; for example, it requires that the coordinate systems are orthogonal. For this reason, the plotting library and the changecoords command support more coordinate systems than the VectorCalculus package.

• 

At present, Maple supports the following coordinate systems:

  

In two dimensions, the following coordinate systems are supported by the plotting library, the changecoords command, and the VectorCalculus package: bipolar, cardioid, cartesian, cassinian, elliptic, hyperbolic, invcassinian, logarithmic, logcosh, parabolic, polar, rose, and tangent. The plotting library and the changecoords command additionally support the coordinate systems invelliptic and maxwell.

  

In two dimensions, the following coordinate systems are supported by the plotting library, the changecoords command, and the VectorCalculus package: bipolarcylindrical, bispherical, cardioidal, cardioidcylindrical, cartesian (*), casscylindrical, conical, cylindrical, ellcylindrical, hypercylindrical, invcasscylindrical, logcoshcylindrical, logcylindrical, oblatespheroidal, paraboloidal, paracylindrical, prolatespheroidal, rosecylindrical, sixsphere, spherical_math (**), spherical_physics (**), tangentcylindrical, tangentsphere, and toroidal. The plotting library and the changecoords command additionally support the coordinate systems confocalellip, confocalparab, ellipsoidal, invellcylindrical, invoblspheroidal, invprospheroidal, maxwellcylindrical, rectangular (*), and paraboloidal2.

  

(*): For technical reasons, the plotting library and the changecoords command understand cartesian to mean the two-dimensional Cartesian coordinate system, and use rectangular to mean the three-dimensional version. The VectorCalculus package uses cartesian for both dimensions.

  

(**): There are two widely used conventions for how to represent spherical coordinates: one is used more in physics and the other more in mathematics. The only difference is a swap of the second and third coordinate: the vector represented by u,v,w in one convention is represented by u,w,v in the other. The plotting library, the changecoords command, and the VectorCalculus package allow you to use the coordinate system names spherical_math and spherical_physics to refer to these coordinate systems unambiguously. You can also use the name spherical; its behavior is as follows:

– 

If neither of the Physics and VectorCalculus packages has been loaded (using the with command), then the plotting library and the changecoords command will interpret spherical as spherical_math.

– 

If either of the packages Physics or VectorCalculus has been loaded, then the plotting library and the changecoords command will interpret spherical as spherical_physics.

– 

The VectorCalculus package will always interpret spherical as spherical_physics.

  

Note: Only the positive roots have been used for the following transformations:

  

In two dimensions: cassinian, hyperbolic, invcassinian, and rose.

  

In three dimensions: casscylindrical, confocalellip, confocalparab, conical, ellipsoidal, hypercylindrical, invcasscylindrical, paraboloidal2, and rosecylindrical.

• 

The conversions from the various coordinate systems to cartesian (rectangular) coordinates in two-dimensional space

u,vx,y

are given by the following equations. The author is indicated where necessary.

  

bipolar:  (Spiegel)

  

x=sinhvcoshvcosu

  

y=sinucoshvcosu

  

 

  

cardioid:

  

x=u2v22u2+v22

  

y=uvu2+v22

  

 

  

cartesian:

  

x=u

  

y=v

  

 

  

cassinian:  (Cassinian-oval)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12

  

 

  

elliptic:

  

x=coshucosv

  

y=sinhusinv

  

 

  

hyperbolic:

  

x=u2+v2+u

  

y=u2+v2u

  

 

  

invcassinian:  (inverse Cassinian-oval)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12ⅇ2u+2ⅇucosv+1

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12ⅇ2u+2ⅇucosv+1

  

 

  

invelliptic:  (inverse elliptic; only supported in the plotting library and changecoords)

  

x=acoshucosvcoshu2sinv2

  

y=asinhusinvcoshu2sinv2

  

 

  

logarithmic:

  

x=alnu2+v2π

  

y=2aarctanvuπ

  

 

  

logcosh:  (ln cosh)

  

x=alncoshu2sinv2π

  

y=2aarctantanhutanvπ

  

 

  

maxwell:  (only supported in the plotting library and changecoords)

  

x=au+1+ⅇucosvπ

  

y=av+ⅇusinvπ

  

 

  

parabolic:

  

x=u22v22

  

y=uv

  

 

  

polar:

  

x=ucosv

  

y=usinv

  

 

  

rose:

  

x=u2+v2+uu2+v2

  

y=u2+v2uu2+v2

  

 

  

tangent:

  

x=uu2+v2

  

y=vu2+v2

• 

The conversions from the various coordinate systems to cartesian coordinates in three-dimensional space

u,v,wx,y,z

  

are given as follows:

  

bipolarcylindrical:  (Spiegel)

  

x=asinhvcoshvcosu

  

y=asinucoshvcosu

  

z=w

  

 

  

bispherical:

  

x=sinucoswd

  

y=sinusinwd

  

z=sinhvd  where d=coshvcosu

  

 

  

cardioidal:

  

x=uvcoswu2+v22

  

y=uvsinwu2+v22

  

z=u2v22u2+v22

  

 

  

cardioidcylindrical:

  

x=u2v22u2+v22

  

y=uvu2+v22

  

z=w

  

 

  

cartesian:  (only supported in the VectorCalculus package - this is called rectangular in the plotting library and changecoords)

  

x=u

  

y=v

  

z=w

  

 

  

casscylindrical:  (Cassinian-oval cylinder)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12

  

z=w

  

 

  

confocalellip:  (confocal elliptic; only supported in the plotting library and changecoords)

  

x=a2ua2va2wa2b2a2c2

  

y=b2ub2vb2wa2+b2b2c2

  

z=c2uc2vc2wa2+c2b2+c2

  

 

  

confocalparab:  (confocal parabolic; only supported in the plotting library and changecoords)

  

x=a2ua2va2wa2+b2

  

y=b2ub2vb2wa2+b2

  

z=a22+b22u2v2w2

  

 

  

conical:

  

x=uvwab

  

y=ub2+v2b2w2a2b2b

  

z=ua2v2a2w2a2b2a

  

 

  

cylindrical:

  

x=ucosv

  

y=usinv

  

z=w

  

 

  

ellcylindrical:  (elliptic cylindrical)

  

x=acoshucosv

  

y=asinhusinv

  

z = w

  

 

  

ellipsoidal:  (only supported in the plotting library and changecoords)

  

x=uvwab

  

y=b2+u2b2+v2b2w2a2b2b

  

z=a2+u2a2v2a2w2a2b2a

  

 

  

hypercylindrical:  (hyperbolic cylinder)

  

x=u2+v2+u

  

y=u2+v2u

  

z=w

  

 

  

invcasscylindrical:  (inverse Cassinian-oval cylinder)

  

x=a2ⅇ2u+2ⅇucosv+1+ⅇucosv+12ⅇ2u+2ⅇucosv+1

  

y=a2ⅇ2u+2ⅇucosv+1ⅇucosv12ⅇ2u+2ⅇucosv+1

  

z=w

  

 

  

invellcylindrical:  (inverse elliptic cylinder; only supported in the plotting library and changecoords)

  

x=acoshucosvcoshu2sinv2

  

y=asinhusinvcoshu2sinv2

  

z=w

  

 

  

invoblspheroidal:  (inverse oblate spheroidal; only supported in the plotting library and changecoords)

  

x=acoshusinvcoswcoshu2cosv2

  

y=acoshusinvsinwcoshu2cosv2

  

z=asinhucosvcoshu2cosv2

  

 

  

invprospheroidal:  (inverse prolate spheroidal; only supported in the plotting library and changecoords)

  

x=asinhusinvcoswcoshu2sinv2

  

y=asinhusinvsinwcoshu2sinv2

  

z=acoshucosvcoshu2sinv2

  

 

  

logcylindrical:  (logarithmic cylinder)

  

x=alnu2+v2π

  

y=2aarctanvuπ

  

z=w

  

 

  

logcoshcylindrical:  (ln cosh cylinder)

  

x=alncoshu2sinv2π

  

y=2aarctantanhutanvπ

  

z=w

  

 

  

maxwellcylindrical:  (only supported in the plotting library and changecoords)

  

x=au+1+ⅇucosvπ

  

y=av+ⅇusinvπ

  

z=w

  

 

  

oblatespheroidal:

  

x=acoshusinvcosw

  

y=acoshusinvsinw

  

z=asinhucosv

  

 

  

paraboloidal:  (Spiegel)

  

x=uvcosw

  

y=uvsinw

  

z=u22v22

  

 

  

paraboloidal2:  (Moon; only supported in the plotting library and changecoords)

  

x=2uaavawab

  

y=2ubbvbwab

  

z=u+v+wab

  

 

  

paracylindrical:

  

x=u22v22

  

y=uv

  

z=w

  

 

  

prolatespheroidal:

  

x=asinhusinvcosw

  

y=asinhusinvsinw

  

z=acoshucosv

  

 

  

rectangular:  (only supported in the plotting library and changecoords - this is called cartesian in the VectorCalculus package)

  

x=u

  

y=v

  

z=w

  

 

  

rosecylindrical:

  

x=u2+v2+uu2+v2

  

y=u2+v2uu2+v2

  

z=w

  

 

  

sixsphere:  (6-sphere)

  

x=uu2+v2+w2

  

y=vu2+v2+w2

  

z=wu2+v2+w2

  

 

  

spherical is understood as either spherical_math or spherical_physics; see note marked (**) above

  

 

  

spherical_math:

  

x=ucosvsinw

  

y=usinvsinw

  

z=ucosw

  

 

  

spherical_physics:

  

x=ucoswsinv

  

y=usinvsinw

  

z=ucosv

  

 

  

tangentcylindrical:

  

x=uu2+v2

  

y=vu2+v2

  

z=w

  

 

  

tangentsphere:

  

x=ucoswu2+v2

  

y=usinwu2+v2

  

z=vu2+v2

  

 

  

toroidal:

  

x=asinhvcoswd

  

y=asinhvsinwd

  

z=asinud  where d=coshvcosu

• 

The a, b, and c values in the above coordinate transformations can be given in different ways depending on where they are used:

– 

The plotting library and the changecoords command accept the coordinate specification as a function, e.g., conical(a,b) or ellcylindrical(2).

– 

The VectorCalculus package uses a different mechanism using the GetCoordinateParameters and SetCoordinateParameters commands.

  

In all cases, the default values used are a = 1, b = 1/2, and c = 1/3.

References

  

Moon, P., and Spencer, D. E. Field Theory Handbook 2d ed. Berlin: Springer-Verlag, 1971.

  

Spiegel, Murray R. Mathematical Handbook Of Formulas And Tables. New York: McGraw-Hill, 1968.

See Also

addcoords

changecoords

plot3d[coords]

plot[coords]

plots[changecoords]

plots[coordplot3d]

plots[coordplot]

VectorCalculus

VectorCalculus[AddCoordinates]

VectorCalculus[GetCoordinateParameters]

VectorCalculus[GetCoordinates]

VectorCalculus[SetCoordinateParameters]

VectorCalculus[SetCoordinates]

 


Download Help Document