DeepLearning
Classify
train and use classifier for arbitrary data
Calling Sequence
Parameters
Options
Description
Compatibility
Classify( data, output )
data
-
DataFrame, Matrix, or list of Matrices or Vectors
output
DataSeries, Matrix, or list
options
zero or more options as specified below
hidden_units=auto or list(integer)
Specifies the depth and number of interior nodes for the neural network underlying this classifier.
num_classes=auto or posint
Specifies the number of distinct categories into which the data should be classified.
The Classify command accepts a set of training data which has been classified into a finite set of classes, trains a neural network model for this classification, and returns a classifier function which can be applied to arbitrary additional data.
training_set := Import("example/iris_training.csv", base=datadir);
test_set := Import("example/iris_test.csv", base=datadir);
classifier := DeepLearning:-Classify( training_set[1..4], training_set[5] );
classifier( test_set[1..4], test_set[5] );
new_sample := DataSeries([4.9,3.1,1.5,0.1], labels=["SepalLength","SepalWidth","PetalLength","PetalWidth"]);
new_sample≔SepalLength4.9SepalWidth3.1PetalLength1.5PetalWidth0.1
classifier( new_sample );
classifier( new_sample, output = probabilities );
The DeepLearning[Classify] command was introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
DeepLearning,DNNClassifier
Download Help Document
What kind of issue would you like to report? (Optional)