AscendingIdealsBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[AscendingIdealsBasis] - find a basis for a solvable Lie algebra which defines an ascending chain of ideals

Calling Sequences

     AscendingIdealsBasis(Alg)

Parameters

     Alg        - (optional) Maple name or string, the name of an initialized Lie algebra

 

Description

Examples

Description

• 

Every (complex) solvable Lie algebra admits a basis such that the subspace spanform an ideal in span The command AscendingIdealsBasis calculates such a basis. This basis can be quite useful in a situation where the matrix exponentials of the adjoint matrices are needed.

Examples

 

Example 1.

First we initialize a 5-dimensional Lie algebra.

(2.1)

 

We can use the command Query/"Solvable" to check that this is a solvable Lie algebra.

Alg1 > 

(2.2)

 

Now we calculate a basis with the ascending ideals property.

Alg1 > 

(2.3)

 

The following two commands check, for example, that  span  is an ideal in span .

Alg1 > 

(2.4)
Alg1 > 

(2.5)

 

The command  Query/"AscendingIdealsBasis" will verify that the basis B has the ascending ideals property.

Alg1 > 

(2.6)

 

The ascending ideals property becomes apparent if we re-initialize the Lie algebra using the basis B (using the command LieAlgebraData).

Alg1 > 

(2.7)
Alg1 > 

(2.8)
alg2 > 

See Also

DifferentialGeometry

LieAlgebras

BracketOfSubspaces

GetComponents

MultiplicationTable

Query

 


Download Help Document