ChevalleyBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[ChevalleyBasis] - find the Chevalley basis for a real, split semi-simple Lie algebra

Calling Sequences

     ChevalleyBasis(CSA, RSD, PosRts)

   

Parameters

     CSA      - a list of vectors, defining a Cartan subalgebra of a Lie algebra

     RSD      - a table, specifying the root space decomposition of the Lie algebra with respect to the Cartan subalgebra CSA

     PosRts   - a list of vectors, specifying a choice of positive roots for the root space decomposition

     option   - the keyword argument Algebratype = [A, r] where A is a string "A", "B", "C", "D", "E", "F", or "G" and r is the rank of the Lie algebra.

  

 

Description

Examples

Description

• 

A Chevalley basis is a special choice of basis for a real, split semi-simple Lie algebra. It is adapted to the root space decomposition. In a Chevalley basis, a Cartan subalgebra, the root space decomposition, the Cartan matrix, the simple roots, and the root pattern can be determined by inspection. The structure constants are all integers.

• 

The command ChevalleyBasis(CSA, RSD, PosRts) returns a list of vectors defining a Chevalley basis  =. The structure equations of this basis are

,  

Here  is the Cartan matrix for . The roots for , , and  are and The integer is the largest positive integer such that is not a root. See ChevalleyBasisDetails for the algorithm used to construct this basis.

• 

Note that in the Chevalley basis all the structure constants are integers and the transformation  ,  is a Lie algebra automorphism.

• 

The Chevalley basis is used by the command SplitAndCompactForms to find the split and compact forms of a general semi-simple Lie algebra.

Examples

 

Example 1.

We calculate a Chevalley basis for the rank 2 Lie algebra . We begin with the basis provided by the command SimpleLieAlgebraData.

 

(2.1)

 

We will use the choices of the Cartan subalgebra, root space decomposition, and positive roots for  contained in SimpleLieAlgebraProperties. (For Lie algebras not created by the SimpleLieAlgebraData command, use CartanSubalgebra, RootSpaceDecomposition, PositiveRoots.)

so32 > 

so32 > 

(2.2)
so32 > 

(2.3)
so32 > 

 

The Chevalley basis for  determined by this Cartan subalgebra and choice of positive roots is:

so32 > 

(2.4)

 

We calculate the structure equations for  in the Chevalley basis and initialize the Lie algebra in this new basis.

so32 > 

(2.5)
so32 > 

(2.6)

 

To display the multiplication table for this Lie algebra we use interface to increase the maximum inline array display size.

so32CB > 

(2.7)
so32CB > 

 

Let us focus in on various parts of the multiplication table. From the first two rows

so32CB > 

 

it is clear that  act diagonally and so form a Cartan subalgebra. From the 3rd and 4th columns we can read off the Cartan matrix for  as the coefficients of:

so32CB > 

The vectors  correspond to the roots  with  being the simple roots. Therefore, from the multiplication table

so32CB > 

 

we can read off the root pattern as , . Finally we note that the vectors  satisfy the same structure equations as .

so32CB > 

See Also

DifferentialGeometry

LieAlgebras

CartanDecomposition

CartanMatrix

CartanSubalgebra

PositiveRoots

RootSpaceDecomposition

SimpleLieAlgebraData

SimpleLieAlgebraProperties

SplitAndCompactForms

 


Download Help Document