GradeSemiSimpleLieAlgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : GradeSemiSimpleLieAlgebra

LieAlgebras[GradeSemiSimpleLieAlgebra] - find the grading of a semi-simple Lie algebra defined by a set of simple roots or restricted simple roots

Calling Sequences

    GradeSemiSimpleLieAlgebra(T1)  

    GradeSemiSimpleLieAlgebra(T2, method = "non-compact")

Parameters

            - a list or set of column vectors, defining a subset of the simple roots or a subset of the restricted simple roots

   T1      - a table, with indices that include "RootSpaceDecomposition", "CartanSubalgebra", "SimpleRoots", "PositiveRoots"

     T2      - a table, with indices that include "RestrictedRootSpaceDecomposition", "CartanSubalgebra", "RestrictedSimpleRoots", "RestrictedPositiveRoots"

 

 

Description

Examples

See Also

Description

• 

Let g be a Lie algebra. A grading of g is a (vector space) direct sum decomposition g =where Gradings of semi-simple Lie algebras can easily be constructed from the root space decomposition. Let h be a Cartan subalgebra and  the associated root space decomposition Let be a choice of positive roots and let be a set of simple roots. Every root α is a sum of simple roots, say and one defines the height of the root as ht.

• 

Now let be a collection of simple roots and define the Σ height of as ht where the sum is taken over those such that . Then the subspaces

  and  

define a (symmetric) grading g =

• 

For real Lie algebras, real gradings can be similarly constructed using the restricted root space decomposition.

• 

The command Query/"Gradation" will test if a given decomposition of a Lie algebra is graded.

Examples

 

Example 1.

We calculate the various gradations for We use the command SimpleLieAlgebraData to initialize the Lie algebra.

(2.1)
sl4 > 

 

We use the command SimpleLieAlgebraProperties to create a table containing the structure properties of .

sl4 > 

 

Here are the possible subsets of the set of simple roots.

sl4 > 

 

Here are the gradings defined by each subset of the simple roots.

sl4 > 

(2.2)
sl4 > 

sl4 > 

sl4 > 

sl4 > 

sl4 > 

sl4 > 

sl4 > 

sl4 > 

 

The Query command can be used to check that each of these define a grading of .

sl4 > 

(2.3)
sl4 > 

(2.4)

 

Example 2.

We calculate the various gradings for We use the command SimpleLieAlgebraData to initialize the Lie algebra.

sl4 > 

sl4 > 

(2.5)

We use the command SimpleLieAlgebraProperties to calculate the restricted root space decomposition, restricted simple roots, etc.

so53 > 

so53 > 

 

The subsets of the restricted simple roots are:

so53 > 

 

Here are the possible gradings for

so53 > 

so53 > 

so53 > 

so53 > 

so53 > 

so53 > 

so53 > 

so53 > 

(2.6)

 

The Query command can be used to check that each of these define a grading of .

so53 > 

(2.7)
so53 > 

(2.8)

 

See Also

DifferentialGeometry,  CartanSubalgebra, KillingForm, LieAlgebras, PositiveRoots, Query, SimpleRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition,  SimpleLieAlgebraData, SimpleLieAlgebraProperties


Download Help Document