RicciScalar - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[RicciScalar] - calculate the Ricci scalar for a metric

Calling Sequences

     RicciScalar(g, R)

Parameters

   g    - a metric tensor on the tangent bundle of a manifold

   R    - (optional) the curvature tensor of the metric  calculated from the Christoffel symbol of

 

Description

Examples

See Also

Description

• 

The Ricci scalar  for a metric  is the total contraction of the inverse of  with the Ricci tensor  of . In components,

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RicciScalar(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-RicciScalar.

Examples

 

Example 1.

First create a 3 dimensional manifold  and define a metric  on .

(2.1)
M > 

(2.2)
M > 

 

Calculate the curvature tensor.

M > 

(2.3)

 

Calculate the Ricci scalar.

M > 

(2.4)

 

Example 2.

We re-work the previous example in an orthonormal frame.

M > 

(2.5)
M > 

M > 

(2.6)
M1 > 

(2.7)

 

Calculate the Ricci scalar.

M1 > 

(2.8)

See Also

DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CurvatureTensor, Physics[Riemann], DGinfo, SectionalCurvature, RicciTensor, Physics[Ricci]


Download Help Document