GroupTheory/ChevalleyG2 - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/ChevalleyG2

GroupTheory

  

ChevalleyG2

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ChevalleyG2( q )

Parameters

q

-

: algebraic : an algebraic expression, taken to be a prime power

Description

• 

The Chevalley group G2q , for a prime power q, is a generically simple group of Lie type. The groups G2q were studied by Dickson in 1905.

• 

The ChevalleyG2( q ) command returns a permutation group isomorphic to the Chevalley group G2q , for prime powers q13. For non-numeric values of the argument q, or for prime powers q larger than 13, a symbolic group representing the group G2q is returned.

• 

Note that the group G22 is not simple, but its derived subgroup is simple (isomorphic to the simple unitary group PSU3,3  .

• 

For values of q for which G2q is available as a permutation group, the generating permutations have orders 2 and 3 in each case.

Examples

withGroupTheory:

GChevalleyG22

G1,23,54,76,108,129,1311,1614,2017,2319,2521,2822,2926,3027,3132,3334,3635,3738,4039,4241,4543,4744,4846,5052,5553,5657,5960,6261,63,1,3,62,4,85,9,147,11,1710,15,2112,18,2413,19,2616,22,2520,27,3228,33,3529,34,3036,38,4137,39,4340,44,4942,46,5145,50,5447,52,5648,53,5755,58,6059,61,62

(1)

GroupOrderG

12096

(2)

IsSimpleG

false

(3)

csCompositionSeriesG

cs1,23,54,76,108,129,1311,1614,2017,2319,2521,2822,2926,3027,3132,3334,3635,3738,4039,4241,4543,4744,4846,5052,5553,5657,5960,6261,63,1,3,62,4,85,9,147,11,1710,15,2112,18,2413,19,2616,22,2520,27,3228,33,3529,34,3036,38,4137,39,4340,44,4942,46,5145,50,5447,52,5648,53,5755,58,6059,61,621,18,2,153,27,32,10,9,29,17,74,23,22,13,6,33,31,58,12,11,26,38,40,30,1614,35,52,59,47,46,36,2519,34,50,43,57,55,37,2021,39,42,2841,45,44,61,62,60,63,4849,53,58,5651,54,1,35,31,9,8,23,25,192,18,17,13,41,44,29,223,24,4,215,28,56,61,52,51,38,166,32,20,15,14,34,7,1110,43,46,3326,30,54,37,48,58,39,2736,50,49,62,59,55,63,5340,57,60,4742,45

(4)

seqIsSimpleH,H=cs

false,true,false

(5)

ClassifyFiniteSimpleGroupcs2

CFSG: Steinberg Group A223=PSU3,3

(6)

IsSimpleDerivedSubgroupG

true

(7)

GChevalleyG27:

GroupOrderG

664376138496

(8)

IsSimpleG

true

(9)

ClassNumberG

72

(10)

GChevalleyG213:

GroupOrderG

3914077489672896

(11)

IsSimpleG

true

(12)

If the value of the prime power q is too large, or if q is a non-numeric expression, then a symbolic group representing G2q is returned.

GChevalleyG2q

GG2q

(13)

GeneratorsG

Error, (in GroupTheory:-Generators) cannot compute the generators of a symbolic group

GroupOrderG

q6q61q21

(14)

IsSimpleG

falseq=2trueotherwise

(15)

IsSolubleG

false

(16)

Compatibility

See Also

GroupTheory[ChevalleyF4]

GroupTheory[ExceptionalGroup]