GeneralLinearGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : GeneralLinearGroup

GroupTheory

  

GeneralLinearGroup

  

construct a permutation group isomorphic to the General Linear Group over a finite field

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

GeneralLinearGroup(n, q)

GL( n, q )

Parameters

n

-

a positive integer

q

-

power of a prime number

Description

• 

The general linear group GLn,q is the set of all nonsingular n×n matrices over a finite field of size q, where q is a prime power.

• 

If n and q are positive integers, then the GeneralLinearGroup( n, q ) command returns a permutation group isomorphic to the general linear group  GLn,q . Otherwise, a symbolic group is returned, for which Maple can do some limited computations.

• 

The abbreviation GL( n, q ) is available as a synonym for GeneralLinearGroup( n, q ).

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GeneralLinearGroup2,3

GL2,3

(1)

GroupOrderGL1,31

30

(2)

GGL2,5

GGL2,5

(3)

GroupOrderG

480

(4)

csCompositionSeriesG

csGL2,51,23,3,112,9,4,175,6,15,187,13,19,218,22,16,1410,12,20,24,1,22,3,142,8,4,165,20,15,106,7,18,199,11,17,2312,13,24,21,5,8,9,7,610,14,11,13,1215,16,17,19,1820,22,23,21,24,5,156,167,178,189,1910,2011,2112,2213,2314,241,32,45,156,187,198,169,1710,2011,2312,2413,2114,22

(5)

seqGroupOrderS,S=cs

480,240,120,2,1

(6)

GroupOrderGL4,3

24261120

(7)

ClassNumberGL31,q

q31q15q14q13q12q11q10+2q8+3q7+4q6+q53q43q3+q

(8)

GroupOrderGLn,q

k=0n1qnqk

(9)

GroupOrderGL3,q

q31q3qq3q2

(10)

GroupOrderDerivedSubgroupGLn,q

qn2k=1n1qk+11

(11)

Compatibility

• 

The GroupTheory[GeneralLinearGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[GeneralLinearGroup] command was updated in Maple 2020.

See Also

GroupTheory[GeneralOrthogonalGroup]

GroupTheory[GeneralUnitaryGroup]

GroupTheory[GroupOrder]

GroupTheory[ProjectiveGeneralLinearGroup]