GroupTheory
NumInvolutions
compute the number of involutions of a group
Calling Sequence
Parameters
Description
Examples
NumInvolutions(G)
G
-
: Group : a group object
An involution of a group is an element of order equal to . The involutions of a group exert significant control over the structure of the group.
Note that a group of odd order has no involutions.
The NumInvolutions(G) command computes the number of involutions of the group G, if possible.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[BabyMonster]
GroupTheory[ConjugacyClasses]
GroupTheory[DihedralGroup]
GroupTheory[FrobeniusGroup]
GroupTheory[GroupOrder]
GroupTheory[QuasicyclicGroup]
GroupTheory[QuaternionGroup]
GroupTheory[SemiDihedralGroup]
GroupTheory[SpecialLinearGroup]
GroupTheory[SymmetricGroup]
with
Download Help Document