GroupTheory
ProjectiveSpecialOrthogonalGroup
construct a permutation group isomorphic to a projective special orthogonal group
Calling Sequence
Parameters
Description
Examples
ProjectiveSpecialOrthogonalGroup(d, n, q)
PSO(d, n, q)
d
-
0, 1 or -1
n
a positive integer
q
power of a prime number
The projective special orthogonal group PSOd,n,q is the quotient of the special orthogonal group SOd,n,q by its center. The value of d must be 0 for odd n, or 1 or −1 for even n.
The ProjectiveSpecialOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the projective special orthogonal group PSOd,n,q .
The PSO( d, n, q ) command is provided as an alias.
If the argument q is not a prime power (and is non-numeric), then a symbolic group representing PSOd,n,q is returned.
withGroupTheory:
G≔ProjectiveSpecialOrthogonalGroup−1,2,7
G≔PSO-1,2,7
GroupOrderG
4
IsCyclicG
true
G≔ProjectiveSpecialOrthogonalGroup1,2,8
G≔PSO1,2,8
AreIsomorphicG,DihedralGroup7
G≔PSO0,3,3
G≔PSO0,3,3
AreIsomorphicG,Symm4
G≔PSO−1,4,9
G≔PSO-1,4,9
265680
IsSimpleG
G≔PSO1,4,9
G≔PSO1,4,9
259200
false
See Also
GroupTheory[ProjectiveGeneralOrthogonalGroup]
GroupTheory[SpecialOrthogonalGroup]
Download Help Document