ProjectiveSpecialUnitaryGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : ProjectiveSpecialUnitaryGroup

GroupTheory

  

ProjectiveSpecialUnitaryGroup

  

construct a permutation group isomorphic to a projective special unitary group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ProjectiveSpecialUnitaryGroup( n, q )

PSU( n, q )

Parameters

n

-

a positive integer

q

-

power of a prime number

Description

• 

The projective special unitary group  , over the field with  elements, is the quotient of the special unitary group  by its center.

• 

Note that for  the groups  and  are isomorphic. These groups are soluble being isomorphic, respectively, to the symmetric group of order , and the alternating group of order . Furthermore, the group  is a Frobenius group of order  and is soluble. For all other values of  and , the group  is simple.

• 

The ProjectiveSpecialUnitaryGroup( n, q ) command returns a permutation group isomorphic to the projective special unitary group  .

• 

If either or both of the arguments n and q are non-numeric, then a symbolic group representing the projective special unitary group is returned.

• 

The command PSU( n, q ) is provided as an abbreviation.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Compatibility

• 

The GroupTheory[ProjectiveSpecialUnitaryGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[ProjectiveSpecialUnitaryGroup] command was updated in Maple 2020.

See Also

assuming

GroupTheory[AreIsomorphic]

GroupTheory[Degree]

GroupTheory[Generators]

GroupTheory[GroupOrder]

GroupTheory[IdentifyFrobeniusGroup]

GroupTheory[IsSimple]

GroupTheory[ProjectiveSpecialLinearGroup]

GroupTheory[SpecialUnitaryGroup]

 


Download Help Document