GroupTheory/Ree2F4 - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/Ree2F4

GroupTheory

  

Ree2F4

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Ree2F4( q )

Parameters

q

-

: {posint,algebraic} : an odd power of 2, or an expression

Description

• 

The Ree groups F42q , for an odd power q of 2, are a series of (typically) simple groups of Lie type, first constructed by R. Ree. They are defined only for q=22e+1 an odd power of 2 (where, here, 0e).

• 

The Ree2F4( q ) command constructs a symbolic group representing the large Ree group F42q .

• 

The large Ree groups F42q are simple for all odd powers q of 2 greater than 2, but F422 is not simple. Its derived subgroup is the simple Tits group.

Examples

withGroupTheory:

GRee2F42

GF422

(1)

GroupOrderG

35942400

(2)

IsSimpleG

false

(3)

IsSimpleRee2F48

true

(4)

MinPermRepDegreeRee2F48

1210323465

(5)

IsSimpleRee2F4q

falseq=2trueotherwise

(6)

ClassNumberRee2F4q

q4+4q2+17

(7)

Compatibility

See Also

GroupTheory

GroupTheory[ExceptionalGroup]

GroupTheory[IsSimple]

GroupTheory[Ree2G2]

GroupTheory[Suzuki2B2]

GroupTheory[TitsGroup]