GroupTheory
SylowBasis
construct a Sylow basis for a finite soluble group
Calling Sequence
Parameters
Description
Examples
Compatibility
SylowBasis( G )
G
-
a soluble permutation group
Let G be a finite soluble group. A Sylow basis for G is a collection B of Sylow subgroups of G, one for each prime divisor of the order of G, such that PQ=QP, for each pair P,Q of Sylow subgroups in B.
The existence of a Sylow basis for G is equivalent to the solubility of G.
The SylowBasis( G ) command constructs a Sylow basis for the soluble group G. If the group G is not soluble, then an exception is raised. The group G must be an instance of a permutation group.
with⁡GroupTheory:
G≔Alt⁡4
G≔A4
B≔SylowBasis⁡G
B≔1,32,4,1,42,3,1,3,2
map⁡GroupOrder,B
4,3
evalb⁡ComplexProduct⁡B1,B2,G=ComplexProduct⁡B2,B1,G
true
B≔SylowBasis⁡DihedralGroup⁡15
B≔1,10,4,13,72,11,5,14,83,12,6,15,9,1,11,62,12,73,13,84,14,95,15,10,1,42,35,156,147,138,129,11
5,3,2
SylowBasis⁡PSL⁡4,3
Error, (in SylowBasis) group must be soluble
SylowBasis⁡Symm⁡5
The GroupTheory[SylowBasis] command was introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[IsSoluble]
GroupTheory[SylowSubgroup]
Download Help Document
What kind of issue would you like to report? (Optional)