ProjectiveSymplecticGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : ProjectiveSymplecticGroup

GroupTheory

  

ProjectiveSymplecticGroup

  

construct a permutation group isomorphic to a projective symplectic group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ProjectiveSymplecticGroup(n, q)

PSp(n, q)

Parameters

n

-

an even positive integer

q

-

power of a prime number

Description

• 

The projective symplectic group PSpn,q  is the quotient of the symplectic group Spn,q  by its center.

• 

The groups PSpn,q  are simple except for the group PSp2,2  , which is isomorphic to S3 , the group PSp2,3  , isomorphic to A4 , and the group PSp4,2  which is isomorphic to S6 .

• 

Note that for n=2 the groups PSpn,q  and PSLn,q  are isomorphic.

• 

The integer n must be even.

• 

The ProjectiveSymplecticGroup( n, q ) command returns a permutation group isomorphic to the projective symplectic group PSpn,q  .

• 

The PSp( n, q ) command is provided as an abbreviation.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GProjectiveSymplecticGroup2,64

GPSL2,64

(1)

DegreeG

65

(2)

GroupOrderG

262080

(3)

IsTransitiveG

true

(4)

AreIsomorphicPSp2,2,Symm3

true

(5)

AreIsomorphicPSp2,3,Alt4

true

(6)

GroupOrderPSp4,3

25920

(7)

IsSimplePSp4,3

true

(8)

DisplayCharacterTablePSp4,3

C

1a

2a

2b

3a

3b

3c

3d

4a

4b

5a

6a

6b

6c

6d

6e

6f

9a

9b

12a

12b

|C|

1

45

270

40

40

240

480

540

3240

5184

360

360

720

720

1440

2160

2880

2880

2160

2160

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

χ__2

5

−3

1

123I32

12+3I32

−1

2

1

−1

0

32+I32

32I32

I3

−I3

0

1

12+−32

12−32

12+I32

12I32

χ__3

5

−3

1

12+3I32

123I32

−1

2

1

−1

0

32I32

32+I32

−I3

I3

0

1

12−32

12+−32

12I32

12+I32

χ__4

6

−2

2

−3

−3

3

0

2

0

1

1

1

1

1

−2

−1

0

0

−1

−1

χ__5

10

2

−2

723I32

72+3I32

1

1

2

0

0

123I32

12+3I32

−1

−1

−1

1

12+−32

12−32

12I32

12+I32

χ__6

10

2

−2

72+3I32

723I32

1

1

2

0

0

12+3I32

123I32

−1

−1

−1

1

12−32

12+−32

12+I32

12I32

χ__7

15

−1

−1

6

6

3

0

3

−1

0

2

2

−1

−1

2

−1

0

0

0

0

χ__8

15

7

3

−3

−3

0

3

−1

1

0

1

1

−2

−2

1

0

0

0

−1

−1

χ__9

20

4

4

2

2

5

−1

0

0

0

−2

−2

1

1

1

1

−1

−1

0

0

χ__10

24

8

0

6

6

0

3

0

0

−1

2

2

2

2

−1

0

0

0

0

0

χ__11

30

6

2

329I32

32+9I32

−3

0

2

0

0

32I32

32+I32

−I3

I3

0

−1

0

0

12+I32

12I32

χ__12

30

6

2

32+9I32

329I32

−3

0

2

0

0

32+I32

32I32

I3

−I3

0

−1

0

0

12I32

12+I32

χ__13

30

−10

2

3

3

3

3

−2

0

0

−1

−1

−1

−1

−1

−1

0

0

1

1

χ__14

40

−8

0

53I3

5+3I3

−2

1

0

0

0

1I3

1+I3

1+I3

1I3

1

0

12−32

12+−32

0

0

χ__15

40

−8

0

5+3I3

53I3

−2

1

0

0

0

1+I3

1I3

1I3

1+I3

1

0

12+−32

12−32

0

0

χ__16

45

−3

−3

929I32

92+9I32

0

0

1

1

0

32+3I32

323I32

0

0

0

0

0

0

12I32

12+I32

χ__17

45

−3

−3

92+9I32

929I32

0

0

1

1

0

323I32

32+3I32

0

0

0

0

0

0

12+I32

12I32

χ__18

60

−4

4

6

6

−3

−3

0

0

0

2

2

−1

−1

−1

1

0

0

0

0

χ__19

64

0

0

−8

−8

4

−2

0

0

−1

0

0

0

0

0

0

1

1

0

0

χ__20

81

9

−3

0

0

0

0

−3

−1

1

0

0

0

0

0

0

0

0

0

0

IsSimplePSp4,2

false

(9)

AreIsomorphicPSp4,2,Symm6

true

(10)

The smallest simple group whose order is a perfect square.

GPSp4,7

GPSp4,7

(11)

IsSimpleG

true

(12)

GroupOrderG=117602

138297600=138297600

(13)

ClassifyFiniteSimpleGroupPSp2,4

CFSG: Alternating Group A5

(14)

GroupOrderPSp4,q

q4q21q41igcd2,q1

(15)

IsSimplePSpn,q

falseq=2falseq=3trueotherwisen=2falseq=2trueotherwisen=4trueotherwise

(16)

Compatibility

• 

The GroupTheory[ProjectiveSymplecticGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[ProjectiveSymplecticGroup] command was updated in Maple 2020.

See Also

GroupTheory[Degree]

GroupTheory[GroupOrder]

GroupTheory[IsTransitive]

GroupTheory[ProjectiveSpecialLinearGroup]

GroupTheory[SymplecticGroup]