 IsPowerAssociative - Maple Help

Home : Support : Online Help : Mathematics : Algebra : Magma : IsPowerAssociative

Magma

 IsPowerAssociative
 test whether a finite magma is power associative Calling Sequence IsPowerAssociative( m ) Parameters

 m - Array representing the Cayley table of a finite magma Description

 • The IsPowerAssociative command returns true if each submagma of the magma m generated by a single element is associative. It returns false otherwise. Examples

 > $\mathrm{with}\left(\mathrm{Magma}\right):$
 > $m≔⟨⟨⟨1|2|3⟩,⟨2|3|1⟩,⟨3|1|2⟩⟩⟩$
 ${m}{≔}\left[\begin{array}{ccc}{1}& {2}& {3}\\ {2}& {3}& {1}\\ {3}& {1}& {2}\end{array}\right]$ (1)
 > $\mathrm{IsPowerAssociative}\left(m\right)$
 ${\mathrm{true}}$ (2)
 > $m≔⟨⟨⟨1|2|3⟩,⟨2|3|3⟩,⟨3|1|2⟩⟩⟩$
 ${m}{≔}\left[\begin{array}{ccc}{1}& {2}& {3}\\ {2}& {3}& {3}\\ {3}& {1}& {2}\end{array}\right]$ (3)
 > $\mathrm{IsPowerAssociative}\left(m\right)$
 ${\mathrm{false}}$ (4) Compatibility

 • The Magma[IsPowerAssociative] command was introduced in Maple 16.