Symbolic Math
Back to Portal
Maple lets you manipulate formulas symbolically. For example, here we rearrange the Van der Waals formula
vdw≔P+n2aV2⋅V−n⋅b = n ⋅R⋅T:
solvevdw,P
nRTV2+abn2−VanV2−bn+V
Maple contains much more symbolic math functionality. Explore a few more examples below by selecting an item from the list below
Factor a PolynomialExpand Functions and Distribute ProductsSort a list, Vector or 1D ArrayCollect Coefficients of Like PowersNumerator or Denominator of an ExpressionSeries ExpansionConvert Expression to Different FormFind Indeterminates of an ExpressionCreate a Sequence of Values or ExpressionsSolve a Differential EquationSubstitute an Expression into Another ExpressionDifferentiate and IntegrateLimit of an Expression
Factor a Polynomial
factor6x2+18x−24
6x+4x−1
Details
Expand Functions and Distribute Products Over Sums
expandx+1x+2
x2+3x+2
Sort the elements of a list, Vector, or one-dimensional Array
sort2,1,3
1,2,3
sorta,ba,aaa,aa,length
a,ba,aa,aaa
Collect coefficients of like powers
g:=x2ⅇx−2xⅇx+2ⅇx−x2ⅇx−2xⅇx−2ⅇx:
collectg,ⅇx
x2−2x+2ⅇx+−x2−2x−2ⅇx
Numerator or denominator of an expression
g≔1+xx12y:
numerg
x+1
denomg
xy
Series expansion
seriessinx,x=4,5
sin4+cos4x−4−12sin4x−42−16cos4x−43+124sin4x−44+Ox−45
Convert an expression to a different form
convert1+2 I,polar
polar5,arctan2
g:=sinhx+sinx
g ≔ sinhx+sinx
convertg,exp
12ⅇx−12ⅇ−x−12IⅇIx−ⅇ−Ix
Find indeterminates of an expression
indetsxy+zx
x,y,z
indetssinx ⋅y
x,y,sinx
indetssinx⋅y,name
x,y
Create a sequence of values or expressions
seqi2,i=1..10
1,4,9,16,25,36,49,64,81,100
seqi3, i in 2,1,3,6,7,7,4,2
1,8,27,64,216,343
seqi, i in black, red, purple,mauve
black,mauve,purple,red
Solve a differential equation symbolically
eq≔ⅆⅆtyt+sin2t=0,y0=0:
dsolveeq
yt=14sin2t−12t
Substitute an expression for another expression
subsa=x+1,foo=a+sinxa2
foo=x+1+sinxx+12
Differentiate or integrate an expression
diffx2,x
2x
int2 x,x
x2
Details: diff, int
Limit of an expression
This the the gain of an op amp
gain:=−AC1R2s+1AC1C2R1R2s2+C1C2R1R2s2+AC1R1s+AC2R1s+C1R1s+C1R2s+C2R1s+1:
Compute the limit as A goes to infinity.
limitgain,A=infinity
−C1R2s+1R1sC1C2R2s+C1+C2
Download Help Document