RemainderTerm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[NumericalAnalysis]

  

RemainderTerm

  

return the remainder term from an interpolation structure

 

Calling Sequence

Parameters

Options

Description

Notes

Examples

Calling Sequence

RemainderTerm(p, opts)

Parameters

p

-

a POLYINTERP structure

opts

-

(optional) equation(s) of the form keyword=value, where keyword is: errorboundvar; options for returning the remainder term

Options

• 

errorboundvar = name

  

The name to assign to the independent variable in the remainder term.

Description

• 

The RemainderTerm command returns the remainder term from the POLYINTERP structure p.

• 

The POLYINTERP structure is created using the PolynomialInterpolation command.

• 

In order for the remainder term to exist, the POLYINTERP structure p must have an associated exact function, given through the PolynomialInterpolation command.

Notes

• 

POLYINTERP structures that were created with the CubicSpline command cannot be used with the RemainderTerm command, since they do not have a remainder term.

• 

A remainder term is also called an error term.

Examples

withStudentNumericalAnalysis:

xy0,4.0,0.5,0,1.0,2.0,1.5,0,2.0,1.0,2.5,0,3.0,0.5

xy0,4.0,0.5,0,1.0,−2.0,1.5,0,2.0,1.0,2.5,0,3.0,−0.5

(1)

p1PolynomialInterpolationxy,function=22xcosπx,method=lagrange,extrapolate=0.25,0.75,1.25,errorboundvar=ξ:

RemainderTermp1

22ξln27cosπξ722ξln26πsinπξ+2122ξln25π2cosπξ+3522ξln24π3sinπξ3522ξln23π4cosπξ2122ξln22π5sinπξ+722ξln2π6cosπξ+22ξπ7sinπξxx0.5x1.0x1.5x2.0x2.5x3.05040&where0.ξ3.0

(2)

xyyp1,1.105170918,0.2210341836,1.5,1.252322716,0.3756968148,2,1.491824698,0.5967298792

xyyp1,1.105170918,0.2210341836,1.5,1.252322716,0.3756968148,2,1.491824698,0.5967298792

(3)

p2PolynomialInterpolationxyyp,method=hermite,function=exp0.1x2,independentvar=x,errorboundvar=ξ,digits=5:

RemainderTermp2

0.120ⅇ0.1ξ2+0.0720ξ2ⅇ0.1ξ2+0.00480ξ4ⅇ0.1ξ2+0.000064ξ6ⅇ0.1ξ2x1.2x1.52x2.2720&where1.ξ2.

(4)

See Also

Student[NumericalAnalysis]

Student[NumericalAnalysis][ApproximateExactUpperBound]

Student[NumericalAnalysis][ApproximateValue]

Student[NumericalAnalysis][ComputationOverview]

Student[NumericalAnalysis][DataPoints]

Student[NumericalAnalysis][ExactValue]

Student[NumericalAnalysis][InterpolantRemainderTerm]

Student[NumericalAnalysis][PolynomialInterpolation]