Tuned Mass Damper Design for Attenuating Vibration - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Applications and Example Worksheets : Science and Engineering : Tuned Mass Damper Design for Attenuating Vibration

Tuned Mass Damper Design for Attenuating Vibration

Introduction

A mass-spring-damper is disturbed by a force that resonates at the natural frequency of the system. This application calculates the optimum spring and damping constant of a parasitic tuned-mass damper that the minimizes the vibration of the system.

The vibration of system with and without the tuned mass-spring-damper is viewed as a frequency response, time-domain simulation and power spectrum.

 


restart:withDynamicSystems:withColorTools:

Derive Expressions for the Optimum Spring and Damping Constant of the Tuned Mass Damper


Natural frequency of the tuned mass damper:

ω__2k__2m__2:


Natural frequency of the main system:

ω__1k__1m__1:


Ratio of the natural frequencies:

αω__2ω__1

αk__2m__2k__1m__1

(2.1)


Optimum ratio of natural frequencies:

α__opt11+m__2m__1:


Hence the optimum spring constant of the tuned mass-spring-damper:

k__2_optsolveα=α__opt,k__2

k__2_optm__1k__1m__2m__1+m__22

(2.2)

Damping ratio:

zb__22 m__2 ω__2:


Optimum damping ratio:

z__opt3 m__2m__18 1+m__2m__13:


Hence the optimum damping constant of the tuned mass-spring-damper:

 b__2_optsubsk__2=k__2_opt,solvez=z__opt,b__2

b__2_opt6m__2m__11+m__2m__13m__1k__1m__1+m__22m__22

(2.3)

System Parameters

Main spring mass damper parameters:

params__mainm__1=1.764 105,k__1=3.45 107,b__1=1.531 105:


Mass of the tuned mass damper:

m__TMD8165:

 

Optimum spring and damping constants of the tuned mass damper are:

k__2_calcevalk__2_opt,params__main,m__2=m__TMD;

k__2_calc1.458730861×106

(3.1)

b__2_calcevalfevalb__2_opt,params__main,m__2=m__TMD;

b__2_calc26869.77096

(3.2)

Parameters for the system with and without a tuned mass damper:

params__TMDparams__main,m__2=m__TMD,k__2=k__2_calc,b__2=b__2_calc:params__noTMDparams__main,m__2=0,k__2=0,b__2=0:

Equations of Motion for the Entire System

de:=m__2ⅆ2ⅆt2x__2t=k__2 x__2tx__1tb__2 ⅆⅆtx__2tⅆⅆtx__1t, m__1 ⅆ2ⅆt2x__1t=k__1 x__1tb__1 ⅆⅆtx__1tk__2 x__1tx__2tb__2 ⅆⅆtx__1tⅆⅆtx__2t+Ft:ic:=x__10=0,Dx__10=0,x__20=0,Dx__20=0:

sys:=DiffEquationde,Ft,x__1t:

Frequency Response

Response with  tuned mass damper:

p1:=MagnitudePlotsys,range=5..30,parameters=params__TMD,color=ColorRGB,0/255,79/255,121/255,legend=Tuned:


Response with no tuned mass damper:

p2MagnitudePlotsys,range=5..30,parameters=params__noTMD,color=ColorRGB,150/255,40/255,27/255,legend=Not Tuned:

plots:-displayp1,p2,size=800,400,thickness=2,axesfont=Calibri,labelfont=Calibri,background=ColorRGB,218/255,223/255,225/255,legendstyle=font=Calibri

 

Dynamic Response

Assume that the system is perturbed at the natural frequency of the system.

f__natevalω__1,params__main

f__nat13.98492872

(6.1)

p3ResponsePlotsys,7500sinf__natt,parameters=params__TMD,color=ColorRGB,0/255.,79/255,121/255,legend=Tuned:

p4ResponsePlotsys,7500sinf__nat t,parameters=params__noTMD,color=ColorRGB,150/255,40/255,27/255,legend=Not Tuned:

plots:- displayp3,p4,axesfont=Calibri,thickness=2,size=800,400,gridlines,axesfont=Calibri,labelfont=Calibri,background=ColorRGB,218/255,223/255,225/255,legendstyle=font=Calibri