Knots - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Examples of Knots

The following example worksheet shows various examples of knots visualized using the plots:-tubeplot and algcurves:-plot_knot commands.

Unknot

The unknot can be defined by the following parametric equations:

$x=\mathrm{sin}\left(t\right)$

$y=\mathrm{cos}\left(t\right)$

$z=0$

The Trefoil Knot

The trefoil knot can be defined by the following parametric equations:

$x=\mathrm{sin}\left(t\right)+2\mathrm{sin}\left(2t\right)$

$y=\mathrm{cos}\left(t\right)+2\mathrm{sin}\left(2t\right)$

$z=\mathrm{sin}\left(3t\right)$

 > plots:-tubeplot([sin(t)+2*sin(2*t),cos(t)-2*cos(2*t),-sin(3*t),t= 0..2*Pi],    radius=0.2,axes=none,color="Green",orientation=[90,0],style=surface);

The Figure-Eight Knot

The figure-eight can be defined by the following parametric equations:

$x=\left(2+\mathrm{cos}\left(2t\right)\right)\mathrm{cos}\left(3t\right)$

$y=\left(2+\mathrm{cos}\left(2t\right)\right)\mathrm{sin}\left(3t\right)$

$z=\mathrm{sin}\left(4t\right)$

The Lissajous Knot

The Lissajous knot can be defined by the following parametric equations:

$x=\mathrm{cos}\left({n}_{x}t+{\mathrm{\phi }}_{x}\right)$

$y=\mathrm{cos}\left({n}_{y}t+{\mathrm{\phi }}_{y}\right)$

$z=\mathrm{cos}\left({n}_{z}t+{\mathrm{\phi }}_{z}\right)$

Where ${n}_{x}$, ${n}_{y}$, and ${n}_{z}$ are integers and the phase shifts ${\mathrm{phi}}_{x}$, ${\mathrm{phi}}_{y}$, and ${\mathrm{phi}}_{z}$ are any real numbers.

The 8 21 knot (${n}_{x}=3$, ${n}_{y}=4$, and ${n}_{z}=7$) appears as follows:

Star Knot

A star knot can be defined by using the following polynomial:

 > f := -x^5+y^2;
 ${f}{≔}{-}{{x}}^{{5}}{+}{{y}}^{{2}}$ (1)

Two different projections of the same polynomial

By switching x and y, different visualizations can be generated:

 > g:=(y^3-x^7)*(y^2-x^5)+y^3;
 ${g}{≔}\left({-}{{x}}^{{7}}{+}{{y}}^{{3}}\right){}\left({-}{{x}}^{{5}}{+}{{y}}^{{2}}\right){+}{{y}}^{{3}}$ (2)
 ${f}{≔}\left({-}{{x}}^{{7}}{+}{{y}}^{{3}}\right){}\left({-}{{x}}^{{5}}{+}{{y}}^{{2}}\right)$ (3)
 ${h}{≔}\left({-}{{x}}^{{7}}{+}{{y}}^{{3}}\right){}\left({100}{}{{x}}^{{13}}{-}{{x}}^{{7}}{+}{{y}}^{{3}}\right){}\left({-}{100}{}{{x}}^{{13}}{-}{{x}}^{{7}}{+}{{y}}^{{3}}\right)$ (4)