initially known functions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : General Information : initially known functions

Initially Known Mathematical Functions

Description

• 

These mathematical functions are known to Maple, in that they have simplification procedures defined and/or are known to one or more of: diff, evalc, evalf, expand, series, simplify.

• 

The trigonometric and hyperbolic functions:

sin,

cos,

tan,

sec,

csc,

cot,

sinh,

cosh,

tanh,

sech,

csch,

coth

• 

The inverse trigonometric and inverse hyperbolic functions:

arcsin,

arccos,

arctan,

arcsec,

arccsc,

arccot,

arcsinh,

arccosh,

arctanh,

arcsech,

arccsch,

arccoth

• 

Two-argument arctan:  arctany,x=argx+Iy  in  π,π

• 

For more complete information regarding any of the functions <f> shown here, see ?<f> (for example, ?abs ).

abs

- absolute value of real or complex number

AiryAi,

- Airy wave functions and their negative real zeros

AiryAiZeros,

 

AiryBi,

 

AiryBiZeros

 

AngerJ

- Anger J function

AppellF1,

- Appell's doubly hypergeometric F functions

AppellF2,

 

AppellF3,

 

AppellF4

 

argument

- argument of a complex number

BellB

- Bell polynomials

bernoulli

- Bernoulli numbers and polynomials

BesselI

- modified Bessel function of the first kind

BesselJ

- Bessel function of the first kind

BesselJZeros

- non-negative real zeros of Bessel J

BesselK

- modified Bessel function of the second kind

BesselY

- Bessel function of the second kind

BesselYZeros

- positive real zeros of Bessel Y

Beta

- Beta function

binomial

- binomial coefficients

ceil

- smallest integer greater than or equal to a number

ChebyshevT

- Chebyshev function of the first kind

ChebyshevU

- Chebyshev function of the second kind

Chi

- hyperbolic cosine integral

Ci

- cosine integral

CompleteBellB

- complete Bell polynomials

conjugate

- conjugate of a complex number or expression

csgn

- complex "half-plane" signum function

CoulombF

- regular Coulomb wave function

CylinderD

- Whittaker's parabolic function

CylinderU,

- Parabolic cylinder functions

CylinderV

 

dawson

- Dawson's integral

dilog

- dilogarithm function

Dirac

- Dirac delta function

doublefactorial

- double factorial function

Ei

- exponential integrals

EllipticCE

- complementary complete elliptic integral of the second kind

EllipticCK

- complementary complete elliptic integral of the first kind

EllipticCPi

- complementary complete elliptic integral of the third kind

EllipticE

- incomplete or complete elliptic integral of the second kind

EllipticF

- incomplete elliptic integral of the first kind

EllipticK

- complete elliptic integral of the first kind

EllipticModulus

- Modulus elliptic function

EllipticNome

- Nome elliptic function

EllipticPi

- incomplete or complete elliptic integral of the third kind

erf

- error function

erfc

- complementary error function and its iterated integrals

erfi

- imaginary error function

euler

- Euler numbers and polynomials

exp

- exponential function

factorial

- factorial function

floor

- greatest integer less than or equal to a number

frac

- fractional part of a number

FresnelC

- Fresnel cosine integral

Fresnelf

- Fresnel f auxiliary function

Fresnelg

- Fresnel g auxiliary function

FresnelS

- Fresnel sine integral

GAMMA

- Gamma and incomplete Gamma functions

GaussAGM

- Gauss arithmetic geometric mean

GegenbauerC

- Gegenbauer (ultraspherical) function

GeneralizedPolylog

- generalized polylogarithmic function

HankelH1,

- Hankel functions (Bessel functions of the third kind)

HankelH2

 

harmonic

- partial sum of the harmonic series

Heaviside

- Heaviside step function

HermiteH

- Hermite function

HeunB,

- Heun functions

HeunC,

 

HeunD,

 

HeunG,

 

HeunT

 

HeunBPrime,

- derivatives of Heun functions

HeunCPrime,

 

HeunDPrime,

 

HeunGPrime,

 

HeunTPrime

 

hypergeom

- generalized hypergeometric function

ilog2,

- integer logarithms

ilog10,

 

ilog

 

Im

- imaginary part of a complex number

IncompleteBellB

- incomplete Bell polynomials

InverseJacobiAM

- inverse Jacobi amplitude function

InverseJacobiCD,

- inverse Jacobi elliptic functions

InverseJacobiCN,

 

InverseJacobiCS,

 

InverseJacobiDC,

 

InverseJacobiDN,

 

InverseJacobiDS,

 

InverseJacobiNC,

 

InverseJacobiND,

 

InverseJacobiNS,

 

InverseJacobiSC,

 

InverseJacobiSD,

 

InverseJacobiSN

 

JacobiP

- Jacobi function

JacobiAM

- Jacobi amplitude function

JacobiCD,

- Jacobi elliptic functions

JacobiCN,

 

JacobiCS,

 

JacobiDC,

 

JacobiDN,

 

JacobiDS,

 

JacobiNC,

 

JacobiND,

 

JacobiNS,

 

JacobiSC,

 

JacobiSD,

 

JacobiSN

 

JacobiTheta1,

- Jacobi theta functions

JacobiTheta2,

 

JacobiTheta3,

 

JacobiTheta4

 

JacobiZeta

- Jacobi Zeta function

KelvinBei,

- Kelvin functions

KelvinBer,

 

KelvinHei,

 

KelvinHer,

 

KelvinKei,

 

KelvinKer

 

KummerM,

- Kummer functions

KummerU

 

LaguerreL

- Laguerre function

LambertW

- Lambert W function

LegendreP

- associated Legendre function of the first kind

LegendreQ

- associated Legendre function of the second kind

LerchPhi

- Lerch's Phi function

Li

- logarithmic integral

ln

- natural logarithm (logarithm with base &ExponentialE; = 2.71...)

lnGAMMA

- log-Gamma function

log

- logarithm to arbitrary base

log10

- log to the base 10

log2

- log to the base 2

LommelS1

- Lommel function s

LommelS2

- Lommel function S

MathieuA

- Mathieu characteristic function

MathieuB

- Mathieu characteristic function

MathieuC

- even general Mathieu function

MathieuCPrime

- first derivative of MathieuC

MathieuCE

- even 2π-periodic Mathieu function

MathieuCEPrime

- first derivative of MathieuCE

MathieuExponent

- Mathieu characteristic exponent

MathieuFloquet

- Floquet solution of Mathieu's equation

MathieuFloquetPrime

- first derivative of MathieuFloquet

MathieuS

- odd general Mathieu function

MathieuSPrime

- first derivative of MathieuS

MathieuSE

- odd 2π-periodic Mathieu function

MathieuSEPrime

- first derivative of MathieuSE

MeijerG

- MeijerG function

max

- maximum of a sequence of real values

min

- minimum of a sequence of real values

MultiPolylog

- multiple polylogarithmic function

MultiZeta

- multiple zeta function

pochhammer

- pochhammer symbol

polar

- polar representation of complex numbers

polylog

- polylogarithm function

Psi

- polygamma function

Re

- real part of a complex number

RiemannTheta

- Riemann theta function

round

- nearest integer to a number

signum

- sign of a real or complex number

Shi

- hyperbolic sine integral

Si

- sine integral

SphericalY

- spherical harmonic function

sqrt

- square root

Ssi

- shifted sine integral

Stirling1

- Stirling number of the first kind

Stirling2

- Stirling number of the second kind

StruveH

- Struve function

StruveL

- modified Struve function

surd

- non-principal root function

trunc

- nearest integer to a number in the direction of 0

unwindK

- unwinding number

WeberE

- Weber E function

WeierstrassP

- Weierstrass P-function

WeierstrassPPrime

- Derivative of Weierstrass P-function

WeierstrassSigma

- Weierstrass sigma-function

WeierstrassZeta

- Weierstrass zeta-function

WhittakerM,

- Whittaker functions

WhittakerW

 

Wrightomega

- Wright omega function

Zeta

- Riemann and Hurwitz zeta functions

• 

Additional mathematical functions are defined in various packages, such as the combinatorial functions package combinat, the number theory package NumberTheory, and the orthogonal polynomial package orthopoly. For a complete list of packages, see index[package].

See Also

diff

evalc

evalf

expand

float

FunctionAdvisor

index[package]

Initially Known Constants and Environment Variables

MathematicalFunctions

series

simplify